Question:

Evaluate the integral: \[ I = \int_0^x \frac{t^2}{\sqrt{a^2 + t^2}} dt \]

Show Hint

For integrals involving square roots of quadratic expressions, use trigonometric or hyperbolic substitutions like: \[ t = a \sinh u, t = a \tan \theta \] for simplification.
Updated On: Jun 5, 2025
  • \( \frac{x}{2} \sqrt{a^2 + x^2} + \log \left| x + \sqrt{a^2 + x^2} \right| \)
  • \( \sqrt{a^2 + x^2} - a^2 \operatorname{Sinh}^{-1} \frac{x}{a} \)
  • \( \frac{x}{2} \sqrt{a^2 + x^2} - \frac{a^2}{4} \log \left| x + \sqrt{a^2 + x^2} \right| \)
  • \( \frac{x}{2} \sqrt{a^2 + x^2} - \frac{a^2}{2} \operatorname{Sinh}^{-1} \frac{x}{a} \)
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is D

Solution and Explanation

Using the substitution \( t = a \sinh u \), we rewrite: \[ dt = a \cosh u \, du \] Substituting and simplifying, integrating step by step: \[ I = \int_0^x \frac{t^2}{\sqrt{a^2 + t^2}} dt = \frac{x}{2} \sqrt{a^2 + x^2} - \frac{a^2}{2} \operatorname{Sinh}^{-1} \frac{x}{a} \] Thus, the correct answer is: \[ \frac{x}{2} \sqrt{a^2 + x^2} - \frac{a^2}{2} \operatorname{Sinh}^{-1} \frac{x}{a} \]
Was this answer helpful?
0
0

Top Questions on Differentiation

View More Questions

Questions Asked in AP EAPCET exam

View More Questions

AP EAPCET Notification