Question:

Evaluate the integral: \[ \int \operatorname{Cos}^{-1} \left( \frac{1-x^2}{1+x^2} \right) dx \]

Show Hint

For inverse trigonometric integrals, identify substitution patterns that simplify the expression before differentiation.
Updated On: Jun 5, 2025
  • \( 2[x\operatorname{Tan}^{-1}x-\log\sqrt{1+x^2}] + C \)
  • \( 2x\operatorname{Tan}^{-1}x+\log\sqrt{1+x^2} + C \)
  • \( x\operatorname{Tan}^{-1}x+\log\sqrt{1-x^2} + C \)
  • \( 2[\operatorname{Tan}^{-1}x-\log\sqrt{1+x^2}] + C \)
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is A

Solution and Explanation

Using trigonometric identities to rewrite the given function: \[ \operatorname{Cos}^{-1} \left( \frac{1-x^2}{1+x^2} \right) = 2\operatorname{Tan}^{-1} x \] Thus, the integral reduces to: \[ \int 2\operatorname{Tan}^{-1} x dx \] Applying integration by parts: \[ 2[x\operatorname{Tan}^{-1} x - \log \sqrt{1 + x^2}] + C \] Thus, the correct answer is: \[ 2[x\operatorname{Tan}^{-1}x-\log\sqrt{1+x^2}] + C \]
Was this answer helpful?
0
0

AP EAPCET Notification