Question:

Evaluate the integral: \[ \int \left[\frac{1}{\cos x} - \frac{1}{\sin x} - \frac{1}{\sin x + 3\cos x}\right] dx \]

Show Hint

For integrals involving trigonometric fractions, use substitution to simplify before integrating directly.
Updated On: Jun 5, 2025
  • \( \frac{1}{3} \log \left| \frac{\sin x}{\sin x + 3\cos x} \right| + C \)
  • \( \log \left| \frac{\cos x}{\sin x + 3\cos x} \right| + C \)
  • \( \frac{1}{3} \log \left| \frac{\cos x}{\sin x + 3\cos x} \right| + C \)
  • \( \log \left| \frac{\sin x}{\sin x + 3\cos x} \right| + C \)
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is C

Solution and Explanation

Rewriting the integral: \[ \int \left[\frac{1}{\cos x} - \frac{1}{\sin x} - \frac{1}{\sin x + 3\cos x}\right] dx \] Using trigonometric substitutions and logarithmic properties, simplifying: \[ \frac{1}{3} \log \left| \frac{\cos x}{\sin x + 3\cos x} \right| + C \] Thus, the correct answer is: \[ \frac{1}{3} \log \left| \frac{\cos x}{\sin x + 3\cos x} \right| + C \]
Was this answer helpful?
0
0

AP EAPCET Notification