Step 1: Condition for Continuity at \( x = 0 \)
For \( f(x) \) to be continuous at \( x = 0 \), we require:
\[
\lim_{x \to 0^-} f(x) = \lim_{x \to 0^+} f(x) = f(0)
\]
Step 2: Evaluating \( \lim_{x \to 0^-} f(x) \)
Using first-order approximations for small \( x \),
\[
\sqrt{1+ax^2+bx^3} \approx 1 + \frac{ax^2}{2} + \frac{bx^3}{2}
\]
\[
\sqrt{1-ax^2-bx^3} \approx 1 - \frac{ax^2}{2} - \frac{bx^3}{2}
\]
Subtracting,
\[
\sqrt{1+ax^2+bx^3} - \sqrt{1-ax^2-bx^3} = \left( \frac{ax^2}{2} + \frac{bx^3}{2} \right) - \left(-\frac{ax^2}{2} - \frac{bx^3}{2} \right)
\]
\[
= ax^2 + bx^3
\]
Dividing by \( x^2 \),
\[
\lim_{x \to 0^-} f(x) = a + bx
\]
Setting \( x = 0 \),
\[
\lim_{x \to 0^-} f(x) = a
\]
Step 3: Evaluating \( \lim_{x \to 0^+} f(x) \)
Using first-order approximations,
\[
\tan 3x \approx 3x + \frac{9x^3}{3}
\]
\[
\sin 3x \approx 3x - \frac{9x^3}{6}
\]
Subtracting,
\[
\tan 3x - \sin 3x = \left( 3x + \frac{9x^3}{3} \right) - \left( 3x - \frac{9x^3}{6} \right)
\]
\[
= \frac{9x^3}{3} + \frac{9x^3}{6} = 3x^3 + \frac{3x^3}{2} = \frac{9x^3}{2}
\]
Dividing by \( bx^3 \),
\[
\lim_{x \to 0^+} f(x) = \frac{9}{2b}
\]
Step 4: Equating Limits for Continuity
\[
a = \frac{9}{2b}
\]
Solving for \( ab \),
\[
ab = \frac{9}{2}
\]
Thus, the geometric mean of \( a \) and \( b \) is:
\[
\sqrt{ab} = \sqrt{\frac{9}{2}} = \frac{9}{4}
\]