Step 1: Use sum of cubes formula
\[
1^3 + 2^3 + 3^3 + \cdots + n^3 = \left( \frac{n(n+1)}{2} \right)^2 = \frac{n^2 (n+1)^2}{4}
\]
Step 2: Inequality given
\[
\left( \frac{n(n+1)}{2} \right)^2>x
\]
Step 3: Choose a value \( x \) less than this sum
Among the options, \(\frac{n^2}{4}\) is smaller than the sum and satisfies the condition.