Use integration by parts: Let \[ u = \sin^{-1} x, \quad dv = x \, dx \] \[ du = \frac{1}{\sqrt{1 - x^2}} dx, \quad v = \frac{x^2}{2} \] Then, \[ \int_0^1 x \sin^{-1} x \, dx = \left. \frac{x^2}{2} \sin^{-1} x \right|_0^1 - \int_0^1 \frac{x^2}{2 \sqrt{1 - x^2}} dx \] Evaluate the remaining integral using substitution \( x = \sin \theta \). Final result: \[ \frac{\pi}{8} \]