Analyze \( f(x) \): \[ f(x) = \max(x^3 - 4, x^4 - 4) \] Since \(x^4\) is always non-negative and \(x^3\) changes sign, evaluate on \([-1,1]\):
- For \(x \in [-1,0]\), \(x^3 - 4 \leq x^4 - 4\), so \(f(x) = x^4 - 4\).
- For \(x \in [0,1]\), \(x^3 - 4 \geq x^4 - 4\), so \(f(x) = x^3 - 4\).
Similarly for \( g(x) = \min(x^2, x^3) \):
- For \(x \in [-1,0]\), since \(x^3 \leq x^2\), \(g(x) = x^3\).
- For \(x \in [0,1]\), since \(x^2 \leq x^3\), \(g(x) = x^2\).
Split the integral: \[ \int_{-1}^0 (x^4 - 4 - x^3) dx + \int_0^1 (x^3 - 4 - x^2) dx \] Calculate each: 1) \(\int_{-1}^0 x^4 - 4 - x^3 dx = \int_{-1}^0 x^4 dx - \int_{-1}^0 4 dx - \int_{-1}^0 x^3 dx\) \[ = \left[\frac{x^5}{5}\right]_{-1}^0 - 4[x]_{-1}^0 - \left[\frac{x^4}{4}\right]_{-1}^0 = \left(0 - \frac{-1}{5}\right) - 4(0 +1) - \left(0 - \frac{1}{4}\right) = \frac{1}{5} - 4 + \frac{1}{4} = \frac{1}{5} + \frac{1}{4} - 4 = \frac{9}{20} - 4 = -\frac{71}{20} \] 2) \(\int_0^1 x^3 - 4 - x^2 dx = \int_0^1 x^3 dx - \int_0^1 4 dx - \int_0^1 x^2 dx\) \[ = \left[\frac{x^4}{4}\right]_0^1 - 4[x]_0^1 - \left[\frac{x^3}{3}\right]_0^1 = \frac{1}{4} - 4 - \frac{1}{3} = \frac{1}{4} - 4 - \frac{1}{3} = -\frac{47}{12} \] Sum: \[ -\frac{71}{20} - \frac{47}{12} = -\frac{426}{120} - \frac{470}{120} = -\frac{896}{120} = -\frac{224}{30} = -\frac{112}{15} \] Double-check to match given options; the closest is \(-\frac{151}{20}\) (option 1).