Use the identity: \[ 1 - \sin^4 x = (1 - \sin^2 x)(1 + \sin^2 x) = \cos^2 x (1 + \sin^2 x) \] Rewrite integral: \[ \int \frac{dx}{\cos^2 x (1 + \sin^2 x)} = \int \sec^2 x \frac{dx}{1 + \sin^2 x} \] Use substitution \( t = \tan x \), and evaluate integral, leading to expression in terms of \( \tan x \) and \( \tan^{-1}(\sqrt{2} \tan x) \). From comparison, \( A^2 - B^2 = \frac{1}{8} \).