Find derivative: \[ f'(x) = \cos x + 2 \cos x \sin x = \cos x (1 + 2 \sin x) \] \( f \) is increasing when \( f'(x)>0 \): Case 1: \[ \cos x>0 \implies x \in (-\frac{\pi}{2}, \frac{\pi}{2}) \] Case 2: \[ 1 + 2 \sin x>0 \implies \sin x>-\frac{1}{2} \] On \( [-\pi, \pi] \), \( \sin x>-\frac{1}{2} \) holds for: \[ x \in \left(-\frac{5\pi}{6}, \pi \right) \] Combine intervals to find strictly increasing intervals: \[ (-\frac{5\pi}{6}, -\frac{\pi}{2}) \cup (-\frac{\pi}{6}, \frac{\pi}{2}) \]