We need to find the domain of: \[ f(x) = \frac{3}{4 - x^2} + \log_{10}(x^3 - x) \]
Step 1: Analyze the Rational Part
The term \( \frac{3}{4 - x^2} \) is undefined when the denominator is zero.
So we solve: \[ 4 - x^2 = 0 \Rightarrow x^2 = 4 \Rightarrow x = \pm 2 \] Hence, \( x = -2 \) and \( x = 2 \) are not in the domain.
Step 2: Analyze the Logarithmic Part
The term \( \log_{10}(x^3 - x) \) is defined when: \[ x^3 - x>0 \Rightarrow x(x-1)(x+1)>0 \] Use sign chart method: The critical points are: \( x = -1, 0, 1 \) Check the sign of \( x(x-1)(x+1) \) in each interval: \[ \begin{aligned} x<-1 &: (-)(-)(-) = - \Rightarrow \text{negative} \\ -1<x<0 &: (-)(-)(+) = + \Rightarrow \text{positive} \\ 0<x<1 &: (+)(-)(+) = - \Rightarrow \text{negative} \\ x>1 &: (+)(+)(+) = + \Rightarrow \text{positive} \end{aligned} \] Thus, logarithm is defined in: \[ (-1,0) \cup (1,\infty) \]
Step 3: Combine Conditions from Step 1 and Step 2 From rational term: \( x \ne \pm 2 \)
From log term: \( x \in (-1,0) \cup (1,\infty) \) So the domain is: \[ \left[(-1,0) \cup (1,\infty)\right] \setminus \{2\} = (-1,0) \cup (1,2) \cup (2,\infty) \]