Step 1: Use standard limits for trigonometric functions as \(x \to 0\).
We will use the following well-known limits:
1. \(\lim_{x \to 0} \frac{\sin(ax)}{ax} = 1\)
2. \(\lim_{x \to 0} \frac{1 - \cos(ax)}{ax^2} = \frac{a^2}{2}\)
Step 2: Rewrite the numerator using standard limit forms.
The numerator is \(x^2 \sin^2(3x) + \sin^4(6x)\).
For the first term, \(x^2 \sin^2(3x) = x^2 \left(\frac{\sin(3x)}{3x} \cdot 3x\right)^2 = x^2 \left(\frac{\sin(3x)}{3x}\right)^2 (9x^2) = 9x^4 \left(\frac{\sin(3x)}{3x}\right)^2\).
As \(x \to 0\), this term behaves like \(9x^4 (1)^2 = 9x^4\). For the second term, \(\sin^4(6x) = \left(\frac{\sin(6x)}{6x} \cdot 6x\right)^4 = \left(\frac{\sin(6x)}{6x}\right)^4 (6x)^4 = (6x)^4 \left(\frac{\sin(6x)}{6x}\right)^4 = 1296x^4 \left(\frac{\sin(6x)}{6x}\right)^4\).
As \(x \to 0\), this term behaves like \(1296x^4 (1)^4 = 1296x^4\). So, the numerator approximately becomes \(9x^4 + 1296x^4 = 1305x^4\) as \(x \to 0\). Step 3: Rewrite the denominator using standard limit forms. The denominator is \((1 - \cos 3x)^2\).
We know \(\lim_{x \to 0} \frac{1 - \cos(3x)}{(3x)^2} = \frac{1}{2}\). So, \(1 - \cos 3x \approx \frac{1}{2}(3x)^2 = \frac{9x^2}{2}\) as \(x \to 0\).
Therefore, \((1 - \cos 3x)^2 \approx \left(\frac{9x^2}{2}\right)^2 = \frac{81x^4}{4}\) as \(x \to 0\).
Step 4: Substitute the simplified expressions back into the limit. \[ \lim_{x \to 0} \frac{x^2 \sin^2(3x) + \sin^4(6x)}{(1 - \cos 3x)^2} = \lim_{x \to 0} \frac{9x^4 \left(\frac{\sin(3x)}{3x}\right)^2 + 1296x^4 \left(\frac{\sin(6x)}{6x}\right)^4}{\left(\frac{1 - \cos 3x}{(3x)^2} \cdot (3x)^2\right)^2} \] \[ = \lim_{x \to 0} \frac{x^4 \left[9 \left(\frac{\sin(3x)}{3x}\right)^2 + 1296 \left(\frac{\sin(6x)}{6x}\right)^4\right]}{\left(\frac{1 - \cos 3x}{(3x)^2}\right)^2 (9x^2)^2} \] \[ = \lim_{x \to 0} \frac{x^4 \left[9 \left(\frac{\sin(3x)}{3x}\right)^2 + 1296 \left(\frac{\sin(6x)}{6x}\right)^4\right]}{\left(\frac{1 - \cos 3x}{(3x)^2}\right)^2 (81x^4)} \] Cancel out \(x^4\): \[ = \frac{9 (1)^2 + 1296 (1)^4}{\left(\frac{1}{2}\right)^2 \cdot 81} \] \[ = \frac{9 + 1296}{\frac{1}{4} \cdot 81} \] \[ = \frac{1305}{\frac{81}{4}} \] \[ = 1305 \times \frac{4}{81} \] Now simplify the fraction. Both 1305 and 81 are divisible by 9. \(1305 \div 9 = 145\) \(81 \div 9 = 9\) \[ = \frac{145 \times 4}{9} \] \[ = \frac{580}{9} \]