Step 1: Analyze the integral.
We need to evaluate:
$$
I = \int_{-\pi/2}^{\pi/2} \sin^2 x \cos^2 x (\sin x + \cos x) \, dx.
$$
Split the integral into two parts:
$$
I = \int_{-\pi/2}^{\pi/2} \sin^2 x \cos^2 x \sin x \, dx + \int_{-\pi/2}^{\pi/2} \sin^2 x \cos^2 x \cos x \, dx.
$$
Let:
$$
I_1 = \int_{-\pi/2}^{\pi/2} \sin^2 x \cos^2 x \sin x \, dx, \quad I_2 = \int_{-\pi/2}^{\pi/2} \sin^2 x \cos^2 x \cos x \, dx.
$$
Thus:
$$
I = I_1 + I_2.
$$
Step 2: Evaluate $ I_1 $.
For $ I_1 $:
$$
I_1 = \int_{-\pi/2}^{\pi/2} \sin^2 x \cos^2 x \sin x \, dx.
$$
Use the substitution $ u = \cos x $. Then:
$$
du = -\sin x \, dx \quad \Rightarrow \quad \sin x \, dx = -du.
$$
When $ x = -\frac{\pi}{2} $, $ u = \cos\left(-\frac{\pi}{2}\right) = 0 $. When $ x = \frac{\pi}{2} $, $ u = \cos\left(\frac{\pi}{2}\right) = 0 $. Thus, the limits of integration become $ u = 0 $ to $ u = 0 $.
However, observe that $ \sin^2 x \cos^2 x \sin x $ is an odd function because:
$$
\sin^2(-x) \cos^2(-x) \sin(-x) = (-\sin x)^2 (\cos x)^2 (-\sin x) = -\sin^2 x \cos^2 x \sin x.
$$
Since the integrand is odd and the limits of integration are symmetric about zero, the integral evaluates to zero:
$$
I_1 = 0.
$$
Step 3: Evaluate $ I_2 $.
For $ I_2 $:
$$
I_2 = \int_{-\pi/2}^{\pi/2} \sin^2 x \cos^2 x \cos x \, dx.
$$
Use the substitution $ v = \sin x $. Then:
$$
dv = \cos x \, dx \quad \Rightarrow \quad \cos x \, dx = dv.
$$
When $ x = -\frac{\pi}{2} $, $ v = \sin\left(-\frac{\pi}{2}\right) = -1 $. When $ x = \frac{\pi}{2} $, $ v = \sin\left(\frac{\pi}{2}\right) = 1 $. Thus, the limits of integration become $ v = -1 $ to $ v = 1 $.
The integral becomes:
$$
I_2 = \int_{-1}^{1} (1 - v^2)v^2 \, dv = \int_{-1}^{1} (v^2 - v^4) \, dv.
$$
Split the integral:
$$
I_2 = \int_{-1}^{1} v^2 \, dv - \int_{-1}^{1} v^4 \, dv.
$$
Evaluate each term separately:
1. For $ \int_{-1}^{1} v^2 \, dv $:
$$
\int_{-1}^{1} v^2 \, dv = \left[ \frac{v^3}{3} \right]_{-1}^{1} = \frac{1^3}{3} - \frac{(-1)^3}{3} = \frac{1}{3} + \frac{1}{3} = \frac{2}{3}.
$$
2. For $ \int_{-1}^{1} v^4 \, dv $:
$$
\int_{-1}^{1} v^4 \, dv = \left[ \frac{v^5}{5} \right]_{-1}^{1} = \frac{1^5}{5} - \frac{(-1)^5}{5} = \frac{1}{5} + \frac{1}{5} = \frac{2}{5}.
$$
Thus:
$$
I_2 = \frac{2}{3} - \frac{2}{5} = \frac{10}{15} - \frac{6}{15} = \frac{4}{15}.
$$
Step 4: Combine results.
Since $ I_1 = 0 $ and $ I_2 = \frac{4}{15} $, we have:
$$
I = I_1 + I_2 = 0 + \frac{4}{15} = \frac{4}{15}.
$$
Step 5: Final Answer.
$$
\boxed{\frac{4}{15}}
$$