Step 1: Differentiate the function term by term.
Let
\[
y = (\log x)^{1/x} + x^{\log x}
\]
Step 2: Differentiate \( f(x) = (\log x)^{1/x} \).
Let \( f(x) = u(x)^{v(x)} = (\log x)^{1/x} \)
Take logarithm:
\[
\ln f = \frac{1}{x} \cdot \ln(\log x)
\Rightarrow \frac{1}{f} f'(x) = -\frac{1}{x^2} \ln(\log x) + \frac{1}{x \log x} \cdot \frac{1}{x}
\]
Now:
\[
f'(x) = (\log x)^{1/x} \left( -\frac{1}{x^2} \ln(\log x) + \frac{1}{x^2 \log x} \right)
\]
At \( x = e \):
\[
\log e = 1, \quad \ln(\log e) = \ln 1 = 0
\Rightarrow f'(e) = (1) \cdot \left( 0 + \frac{1}{e^2 \cdot 1} \right) = \frac{1}{e^2}
\]
Step 3: Differentiate \( g(x) = x^{\log x} \).
\[
x^{\log x} = e^{\log x \cdot \ln x}
\Rightarrow \frac{d}{dx} = e^{(\ln x)^2} \cdot \frac{2 \ln x}{x}
\Rightarrow \text{At } x = e, \quad g'(e) = e^{1^2} \cdot \frac{2}{e} = e \cdot \frac{2}{e} = 2
\]
Step 4: Add both results:
\[
\frac{dy}{dx} = f'(e) + g'(e) = \frac{1}{e^2} + 2
\]