Step 1: Find the derivative of the curve.
The given curve is: $$ y = \frac{1}{2x - 5}. $$ Differentiate with respect to $ x $ using the chain rule: $$ \frac{dy}{dx} = \frac{d}{dx} \left( \frac{1}{2x - 5} \right) = -\frac{1}{(2x - 5)^2} \cdot 2 = -\frac{2}{(2x - 5)^2}. $$ Step 2: Use the given slope.
The slope of the tangent at $ P(\alpha, \beta) $ is given as $-2$. Thus: $$ -\frac{2}{(2\alpha - 5)^2} = -2. $$ Simplify: $$ \frac{2}{(2\alpha - 5)^2} = 2 \quad \Rightarrow \quad (2\alpha - 5)^2 = 1. $$ Take the square root: $$ 2\alpha - 5 = \pm 1. $$ Solve for $ \alpha $: 1. $ 2\alpha - 5 = 1 \quad \Rightarrow \quad 2\alpha = 6 \quad \Rightarrow \quad \alpha = 3 $, 2. $ 2\alpha - 5 = -1 \quad \Rightarrow \quad 2\alpha = 4 \quad \Rightarrow \quad \alpha = 2 $.
Step 3: Determine $ \beta $ using the curve equation.
Substitute $ \alpha = 3 $ and $ \alpha = 2 $ into the curve equation $ y = \frac{1}{2x - 5} $: 1. For $ \alpha = 3 $: $$ \beta = \frac{1}{2(3) - 5} = \frac{1}{6 - 5} = 1. $$ Thus, $ P(3, 1) $. 2. For $ \alpha = 2 $: $$ \beta = \frac{1}{2(2) - 5} = \frac{1}{4 - 5} = -1. $$ Thus, $ P(2, -1) $.
Step 4: Identify the correct point in the fourth quadrant.
The fourth quadrant requires $ \alpha>0 $ and $ \beta<0 $. Therefore, the correct point is $ P(2, -1) $.
Step 5: Compute $ \alpha - \beta $.
For $ P(2, -1) $: $$ \alpha - \beta = 2 - (-1) = 2 + 1 = 3. $$
Step 6: Final Answer.
$$ \boxed{3} $$