Step 1: Choose a suitable substitution.
The presence of terms like \((x+1)\) and \(\sqrt{x^2+1}\) suggests a substitution that simplifies both. A common effective substitution for such forms is \( x = \frac{1-y}{1+y} \).
Step 2: Differentiate the substitution and express terms in \(y\).
From \( x = \frac{1-y}{1+y} \):
Differentiate \(x\) with respect to \(y\):
\[
dx = \frac{d}{dy}\left(\frac{1-y}{1+y}\right) dy = \frac{-(1+y) - (1-y)}{(1+y)^2} dy = \frac{-1-y-1+y}{(1+y)^2} dy = \frac{-2}{(1+y)^2} dy
\]
Now, express the terms in the denominator in terms of \(y\):
\[
x+1 = \frac{1-y}{1+y} + 1 = \frac{1-y+1+y}{1+y} = \frac{2}{1+y}
\]
\[
x^2+1 = \left(\frac{1-y}{1+y}\right)^2 + 1 = \frac{(1-y)^2 + (1+y)^2}{(1+y)^2} = \frac{(1-2y+y^2) + (1+2y+y^2)}{(1+y)^2} = \frac{2+2y^2}{(1+y)^2} = \frac{2(1+y^2)}{(1+y)^2}
\]
So,
\[
\sqrt{x^2+1} = \sqrt{\frac{2(1+y^2)}{(1+y)^2}} = \frac{\sqrt{2}\sqrt{1+y^2}}{|1+y|}
\]
Assuming \(1+y > 0\), we have \( \sqrt{x^2+1} = \frac{\sqrt{2}\sqrt{1+y^2}}{1+y} \).
Step 3: Substitute into the integral and simplify.
Substitute \(dx\), \((x+1)\), and \(\sqrt{x^2+1}\) into the integral:
\[
\int \frac{\frac{-2}{(1+y)^2} dy}{\left(\frac{2}{1+y}\right)\left(\frac{\sqrt{2}\sqrt{1+y^2}}{1+y}\right)}
\]
Simplify the denominator:
\[
\left(\frac{2}{1+y}\right)\left(\frac{\sqrt{2}\sqrt{1+y^2}}{1+y}\right) = \frac{2\sqrt{2}\sqrt{1+y^2}}{(1+y)^2}
\]
Now the integral becomes:
\[
\int \frac{-2}{2\sqrt{2}\sqrt{1+y^2}} dy = -\frac{1}{\sqrt{2}} \int \frac{dy}{\sqrt{1+y^2}}
\]
Step 4: Evaluate the simplified integral and express in terms of \(x\).
The integral \( \int \frac{dy}{\sqrt{1+y^2}} \) is a standard integral:
\[
\int \frac{dy}{\sqrt{1+y^2}} = \sinh^{-1}(y) + C'
\]
So the integral becomes:
\[
-\frac{1}{\sqrt{2}} \sinh^{-1}(y) + C
\]
Finally, express \(y\) in terms of \(x\). From the substitution \( x = \frac{1-y}{1+y} \):
\[
x(1+y) = 1-y
\]
\[
x+xy = 1-y
\]
\[
xy+y = 1-x
\]
\[
y(x+1) = 1-x
\]
\[
y = \frac{1-x}{1+x}
\]
Substitute this back into the result:
\[
-\frac{1}{\sqrt{2}} \sinh^{-1}\left(\frac{1-x}{1+x}\right) + C
\]