Step 1: Equation of the tangent to the parabola.
The given parabola is:
$$ y^2 = 8x. $$ The general equation of a tangent to the parabola \(y^2 = 4ax\) at a point \((x_1, y_1)\) is:
$$ yy_1 = 2a(x + x_1). $$ For \(y^2 = 8x\), we have \(4a = 8 \Rightarrow a = 2\). Thus, the tangent equation becomes:
$$ yy_1 = 4(x + x_1). $$ Step 2: Tangents passing through \(P(1, 3)\).
Let the tangents pass through \(P(1, 3)\). Substituting \((x, y) = (1, 3)\) into the tangent equation:
$$ 3y_1 = 4(1 + x_1). $$ Rearrange:
$$ 3y_1 = 4 + 4x_1 \quad \Rightarrow \quad 4x_1 - 3y_1 + 4 = 0. $$ This is the chord of contact of the tangents from \(P(1, 3)\) to the parabola. The points of contact \(A\) and \(B\) lie on this line.
Step 3: Points of intersection of the chord of contact with the parabola.
Substitute \(y_1 = \frac{4x_1 + 4}{3}\) into the parabola equation \(y^2 = 8x\):
$$ \left(\frac{4x_1 + 4}{3}\right)^2 = 8x_1. $$ Simplify:
$$ \frac{(4x_1 + 4)^2}{9} = 8x_1 \quad \Rightarrow \quad (4x_1 + 4)^2 = 72x_1. $$ Expand:
$$ 16x_1^2 + 32x_1 + 16 = 72x_1 \quad \Rightarrow \quad 16x_1^2 - 40x_1 + 16 = 0. $$ Divide by 4:
$$ 4x_1^2 - 10x_1 + 4 = 0. $$ Solve using the quadratic formula:
$$ x_1 = \frac{-(-10) \pm \sqrt{(-10)^2 - 4(4)(4)}}{2(4)} = \frac{10 \pm \sqrt{100 - 64}}{8} = \frac{10 \pm \sqrt{36}}{8} = \frac{10 \pm 6}{8}. $$ Thus:
$$ x_1 = \frac{16}{8} = 2 \quad \text{or} \quad x_1 = \frac{4}{8} = \frac{1}{2}. $$ Corresponding \(y_1\)-coordinates are:
$$ y_1 = \frac{4x_1 + 4}{3}. $$ For \(x_1 = 2\):
$$ y_1 = \frac{4(2) + 4}{3} = \frac{8 + 4}{3} = 4. $$ For \(x_1 = \frac{1}{2}\):
$$ y_1 = \frac{4\left(\frac{1}{2}\right) + 4}{3} = \frac{2 + 4}{3} = 2. $$ Thus, the points of contact are:
$$ A(2, 4) \quad \text{and} \quad B\left(\frac{1}{2}, 2\right). $$ Step 4: Area of \( \triangle ABC \).
The vertices of \( \triangle ABC \) are \( A(2, 4) \), \( B\left(\frac{1}{2}, 2\right) \), and \( C(1, 3) \). The area of a triangle with vertices \((x_1, y_1)\), \((x_2, y_2)\), and \((x_3, y_3)\) is given by:
$$ \text{Area} = \frac{1}{2} \left| x_1(y_2 - y_3) + x_2(y_3 - y_1) + x_3(y_1 - y_2) \right|. $$ Substitute \( A(2, 4) \), \( B\left(\frac{1}{2}, 2\right) \), and \( C(1, 3) \):
$$ \text{Area} = \frac{1}{2} \left| 2(2 - 3) + \frac{1}{2}(3 - 4) + 1(4 - 2) \right|. $$ Simplify:
$$ \text{Area} = \frac{1}{2} \left| 2(-1) + \frac{1}{2}(-1) + 1(2) \right| = \frac{1}{2} \left| -2 - \frac{1}{2} + 2 \right| = \frac{1}{2} \left| -\frac{1}{2} \right| = \frac{1}{2} \cdot \frac{1}{2} = \frac{1}{4}. $$ Step 5: Final Answer.
$$ \boxed{\frac{1}{4}} $$
In the given figure, the numbers associated with the rectangle, triangle, and ellipse are 1, 2, and 3, respectively. Which one among the given options is the most appropriate combination of \( P \), \( Q \), and \( R \)?
