>
AP EAPCET
List of top Questions asked in AP EAPCET
If \(A(\cos \alpha, \sin \alpha)\), \(B(\sin \alpha, -\cos \alpha)\), and \(C(1, 2)\) are the vertices of \(\triangle ABC\), then find the locus of its centroid.
AP EAPCET - 2025
AP EAPCET
Mathematics
Triangles
If the axes are translated to the orthocentre of the triangle formed by points \(A(7,5), B(-5,-7), C(7,-7)\), then the coordinates of the incentre of the triangle in the new system are?
AP EAPCET - 2025
AP EAPCET
Mathematics
Triangles
Line \(L_1\) passes through the points \(\mathbf{i} + \mathbf{j}\) and \(\mathbf{k} - \mathbf{i}\). Line \(L_2\) passes through the point \(\mathbf{j} + 2\mathbf{k}\) and is parallel to the vector \(\mathbf{i} + \mathbf{j} + \mathbf{k}\). If \(\mathbf{x}i + \mathbf{y}j + \mathbf{z}k\) is the point of intersection of the lines \(L_1\) and \(L_2\), then find \((y - x) =\)
AP EAPCET - 2025
AP EAPCET
Mathematics
Geometry and Vectors
A company representative is distributing 5 identical samples of a product among 12 houses in a row such that each house gets at most one sample. The probability that no two consecutive houses get one sample is:
AP EAPCET - 2025
AP EAPCET
Mathematics
Probability
A and B are two independent events of a random experiment and \(P(A)>P(B)\). If the probability that both A and B occur is \(\frac{1}{6}\) and neither of them occurs is \(\frac{1}{3}\), then the probability of the occurrence of B is:
AP EAPCET - 2025
AP EAPCET
Mathematics
Probability
Evaluate: \(\tanh^{-1}\left(\frac{1}{3}\right) + \coth^{-1}(3) =\)
AP EAPCET - 2025
AP EAPCET
Mathematics
Triangles
In \(\triangle ABC\), if the line joining the circumcentre and incentre is parallel to \(BC\), then find \( \cos B + \cos C \).
AP EAPCET - 2025
AP EAPCET
Mathematics
Triangles
In a triangle \(ABC\), if \(r_1 : r_2 = 3 : 4\) and \(r_1 : r_3 = 2 : 3\), then find the ratio \(a : b : c\).
AP EAPCET - 2025
AP EAPCET
Mathematics
Algebra
Let \(\mathbf{a} = \mathbf{i} + 2\mathbf{j} - \mathbf{k}\) and \(\mathbf{b} = 6\mathbf{i} - \mathbf{j} + 2\mathbf{k}\) be two vectors. If \[ |\mathbf{a} \times \mathbf{b}|^2 + |\mathbf{a} . \mathbf{b}|^2 = f(x,y)(x+y) - 46 = 0, \] then what does this represent?
AP EAPCET - 2025
AP EAPCET
Mathematics
Geometry and Vectors
Evaluate: \(\tan\left(2\tan^{-1}\left(-\frac{1}{3}\right) + \tan^{-1}\left(\frac{1}{7}\right)\right) =\)
AP EAPCET - 2025
AP EAPCET
Mathematics
Trigonometric Identities
The coefficient of $x^{10}$ in the expansion of $\left(x + \frac{2}{x} - 5 \right)^{12}$ is
AP EAPCET - 2025
AP EAPCET
Mathematics
Combinatorics
Assertion (A): $S_3 = 55 \times 2^9$
Reason (R): $S_1 = 90 \times 2^8$ and $S_2 = 10 \times 2^8$
AP EAPCET - 2025
AP EAPCET
Mathematics
Number System
If \[ \frac{2x^4 - 3x^2 + 4}{(x^2 + 1)(x^2 + 2)} = a + \frac{px + q}{x^2 + 1} + \frac{mx + n}{x^2 + 2}, \] then $\frac{n}{q} =$
AP EAPCET - 2025
AP EAPCET
Mathematics
Trigonometric Identities
Evaluate \[ (4 \cos^2 \frac{\pi}{20} - 1)(4 \cos^2 \frac{3\pi}{20} - 1)(4 \cos^2 \frac{5\pi}{20} - 1)(4 \cos^2 \frac{7\pi}{20} - 1)(4 \cos^2 \frac{9\pi}{20} - 1). \]
AP EAPCET - 2025
AP EAPCET
Mathematics
Trigonometric Identities
If A and B are the values such that $(A + B)$ and $(A - B)$ are not odd multiples of $\frac{\pi}{2}$ and $2\tan(A+B) = 3 \tan(A-B)$, then $\sin A \cos A =$
AP EAPCET - 2025
AP EAPCET
Mathematics
Trigonometric Identities
If $\cos 80^\circ + \cos 40^\circ - \cos 20^\circ = k$, then $\frac{4k}{3} =$
AP EAPCET - 2025
AP EAPCET
Mathematics
Trigonometric Identities
If the difference of the roots of the equation $x^2 - 7x + 10 = 0$ is same as the difference of the roots of the equation $x^2 - 17x + k = 0$, then a divisor of $k$ is
AP EAPCET - 2025
AP EAPCET
Mathematics
Complex numbers
The product of all the real roots of the equation $|x^2 - 5||x| + 6 = 0$ is
AP EAPCET - 2025
AP EAPCET
Mathematics
Algebra
If $\alpha, \beta$ and $\gamma$ are the roots of the equation $5x^3 - 4x^2 + 3x - 2 = 0$, then $\alpha^3 + \beta^3 + \gamma^3$ equals
AP EAPCET - 2025
AP EAPCET
Mathematics
Algebra
After the roots of the equation $6x^3 + 7x^2 - 4x - 2 = 0$ are diminished by $h$, if the transformed equation does not contain $x$ term, then the product of all possible values of $h$ is
AP EAPCET - 2025
AP EAPCET
Mathematics
Algebra
The number of integers greater than 6000 that can be formed by using the digits 0, 5, 6, 7, 8 and 9 without repetition is
AP EAPCET - 2025
AP EAPCET
Mathematics
Number System
Evaluate \[ \frac{1}{3 . 5} + \frac{1}{5 . 7} + \frac{1}{7 . 9} + .s \text{ up to } 24 \text{ terms}. \]
AP EAPCET - 2025
AP EAPCET
Mathematics
Matrices
If B is the inverse of a third order matrix A and det B = k, then $(\text{adj}(\text{adj} A))^{-1}=$
AP EAPCET - 2025
AP EAPCET
Mathematics
Matrices
If $A = \begin{bmatrix} 2 & 2 & 1 \\ 1 & 3 & 1 \\ 1 & 2 & 2 \end{bmatrix}$ and $\alpha, \beta, \gamma$ are the roots of the equation represented by $|A - xI| = 0$, then $\alpha^2 + \beta^2 + \gamma^2 =$
AP EAPCET - 2025
AP EAPCET
Mathematics
Matrices
If the values of $x, y,$ and $z$ satisfy the equations \[ 2x - 3y + 2z + 15 = 0,
3x + y - z + 2 = 0,
x - 3y - 3z + 8 = 0 \] simultaneously are $\alpha, \beta,$ and $\gamma$ respectively, then
AP EAPCET - 2025
AP EAPCET
Mathematics
Complex numbers
Prev
1
...
24
25
26
27
28
...
251
Next