Given \(P(A \cap B) = \frac{1}{6}\) and \(P(\text{neither A nor B}) = \frac{1}{3}\).
Since A and B are independent,
\[
P(A \cap B) = P(A) P(B) = \frac{1}{6}.
\]
Also,
\[
P(\text{neither A nor B}) = 1 - P(A \cup B) = \frac{1}{3} \implies P(A \cup B) = \frac{2}{3}.
\]
Using the formula,
\[
P(A \cup B) = P(A) + P(B) - P(A)P(B) = \frac{2}{3}.
\]
Let \(P(B) = x\) and \(P(A) = \frac{1}{6x}\) (since \(P(A)P(B) = \frac{1}{6}\)).
Substitute:
\[
\frac{1}{6x} + x - \frac{1}{6} = \frac{2}{3}.
\]
Multiply both sides by \(6x\):
\[
1 + 6x^2 - x = 4x,
\]
\[
6x^2 - 5x + 1 = 0.
\]
Solve quadratic:
\[
x = \frac{5 \pm \sqrt{25 - 24}}{12} = \frac{5 \pm 1}{12}.
\]
Possible values:
\[
x = \frac{6}{12} = \frac{1}{2}
\text{or}
x = \frac{4}{12} = \frac{1}{3}.
\]
Since \(P(A)>P(B)\), \(P(B) = \frac{1}{3}\).