Recall that \(\coth^{-1}(x) = \tanh^{-1}\left(\frac{1}{x}\right)\) for \(x>1\). Thus,
\[
\tanh^{-1}\left(\frac{1}{3}\right) + \coth^{-1}(3) = \tanh^{-1}\left(\frac{1}{3}\right) + \tanh^{-1}\left(\frac{1}{3}\right) = 2 \tanh^{-1}\left(\frac{1}{3}\right).
\]
Using the double argument formula for \(\tanh^{-1}\),
\[
2\tanh^{-1}(x) = \sinh^{-1}\left(\frac{2x}{1 - x^2}\right).
\]
Put \(x = \frac{1}{3}\),
\[
\frac{2 \times \frac{1}{3}}{1 - \left(\frac{1}{3}\right)^2} = \frac{\frac{2}{3}}{1 - \frac{1}{9}} = \frac{\frac{2}{3}}{\frac{8}{9}} = \frac{2}{3} \times \frac{9}{8} = \frac{3}{4}.
\]
Hence,
\[
\tanh^{-1}\left(\frac{1}{3}\right) + \coth^{-1}(3) = \sinh^{-1}\left(\frac{3}{4}\right).
\]