Question:

If \(A(\cos \alpha, \sin \alpha)\), \(B(\sin \alpha, -\cos \alpha)\), and \(C(1, 2)\) are the vertices of \(\triangle ABC\), then find the locus of its centroid.

Show Hint

Use centroid formula and trigonometric identities to find locus by eliminating parameter \(\alpha\).
Updated On: Jun 6, 2025
  • \(3(x^2 + y^2) - 2x - 4y + 1 = 0\)
  • \(x^2 + y^2 - 2x - 4y + 1 = 0\)
  • \(x^2 + y^2 - 2x - 4y + 3 = 0\)
  • \(2(x^2 + y^2) - 2x - 4y + 5 = 0\)
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is A

Solution and Explanation

Centroid \(G\) of \(\triangle ABC\) is \[ G = \left(\frac{\cos \alpha + \sin \alpha + 1}{3}, \frac{\sin \alpha - \cos \alpha + 2}{3}\right). \] Let \[ x = \frac{\cos \alpha + \sin \alpha + 1}{3},
y = \frac{\sin \alpha - \cos \alpha + 2}{3}. \] Multiply both sides by 3: \[ 3x - 1 = \cos \alpha + \sin \alpha,
3y - 2 = \sin \alpha - \cos \alpha. \] Add and subtract: \[ (3x - 1) + (3y - 2) = 2 \sin \alpha, \] \[ (3x - 1) - (3y - 2) = 2 \cos \alpha. \] Then, \[ \sin \alpha = \frac{3x + 3y - 3}{2},
\cos \alpha = \frac{3x - 3y + 1}{2}. \] Use the identity \(\sin^2 \alpha + \cos^2 \alpha = 1\): \[ \left(\frac{3x + 3y - 3}{2}\right)^2 + \left(\frac{3x - 3y + 1}{2}\right)^2 = 1. \] Multiply both sides by 4: \[ (3x + 3y - 3)^2 + (3x - 3y + 1)^2 = 4. \] Expand and simplify to get: \[ 3(x^2 + y^2) - 2x - 4y + 1 = 0. \]
Was this answer helpful?
0
0

AP EAPCET Notification