Centroid \(G\) of \(\triangle ABC\) is
\[
G = \left(\frac{\cos \alpha + \sin \alpha + 1}{3}, \frac{\sin \alpha - \cos \alpha + 2}{3}\right).
\]
Let
\[
x = \frac{\cos \alpha + \sin \alpha + 1}{3},
y = \frac{\sin \alpha - \cos \alpha + 2}{3}.
\]
Multiply both sides by 3:
\[
3x - 1 = \cos \alpha + \sin \alpha,
3y - 2 = \sin \alpha - \cos \alpha.
\]
Add and subtract:
\[
(3x - 1) + (3y - 2) = 2 \sin \alpha,
\]
\[
(3x - 1) - (3y - 2) = 2 \cos \alpha.
\]
Then,
\[
\sin \alpha = \frac{3x + 3y - 3}{2},
\cos \alpha = \frac{3x - 3y + 1}{2}.
\]
Use the identity \(\sin^2 \alpha + \cos^2 \alpha = 1\):
\[
\left(\frac{3x + 3y - 3}{2}\right)^2 + \left(\frac{3x - 3y + 1}{2}\right)^2 = 1.
\]
Multiply both sides by 4:
\[
(3x + 3y - 3)^2 + (3x - 3y + 1)^2 = 4.
\]
Expand and simplify to get:
\[
3(x^2 + y^2) - 2x - 4y + 1 = 0.
\]