Parametric form of \(L_1\): Let \(L_1\) pass through \(\mathbf{i} + \mathbf{j}\) with direction vector \(\mathbf{k} - \mathbf{i} - (\mathbf{i} + \mathbf{j}) = -2\mathbf{i} - \mathbf{j} + \mathbf{k}\). So,
\[
\mathbf{r} = (\mathbf{i} + \mathbf{j}) + t(-2\mathbf{i} - \mathbf{j} + \mathbf{k}).
\]
Parametric form of \(L_2\):
\[
\mathbf{r} = (\mathbf{j} + 2\mathbf{k}) + s(\mathbf{i} + \mathbf{j} + \mathbf{k}).
\]
Equate coordinates:
\[
x: 1 - 2t = s,
y: 1 - t = 1 + s,
z: t = 2 + s.
\]
From the second equation:
\[
1 - t = 1 + s \implies -t = s \implies s = -t.
\]
From the first equation:
\[
1 - 2t = s = -t \implies 1 - 2t = -t \implies 1 = t.
\]
From the third:
\[
z = t = 1.
\]
Calculate \(y - x\):
\[
y = 1 - t = 1 - 1 = 0,
x = 1 - 2t = 1 - 2 = -1,
\]
so
\[
y - x = 0 - (-1) = 1 = z.
\]
Hence, \(y - x = z\).