Use identity: $\alpha^3 + \beta^3 + \gamma^3 = (\alpha + \beta + \gamma)^3 - 3(\alpha + \beta + \gamma)(\alpha \beta + \beta \gamma + \gamma \alpha) + 3\alpha \beta \gamma$
From the equation: $a = 5, b = -4, c = 3, d = -2$
Sum of roots: $\dfrac{4}{5}$, sum of product of roots two at a time: $\dfrac{3}{5}$, product: $\dfrac{2}{5}$
Now,
\[
\alpha^3 + \beta^3 + \gamma^3 = \left(\frac{4}{5}\right)^3 - 3. \frac{4}{5} . \frac{3}{5} + 3 . \frac{2}{5} = \frac{64}{125} - \frac{36}{25} + \frac{6}{5}
\]
Simplify:
\[
\frac{64}{125} - \frac{180}{125} + \frac{150}{125} = \frac{34}{125}
\]