>
AP EAPCET
List of top Questions asked in AP EAPCET
If the magnitude of a vector \( \vec{p} \) is 25 units and its y-component is 7 units, then its x-component is
AP EAPCET - 2025
AP EAPCET
Physics
Kinematics
The height of ceiling in an auditorium is 30 m. A ball is thrown with a speed of \( 30 \, \text{m s}^{-1} \) from the entrance such that it just moves very near to the ceiling without touching it and then it reaches the ground at the end of the auditorium. Then the length of auditorium is [Acceleration due to gravity \( = 10 \, \text{m s}^{-2} \)]
AP EAPCET - 2025
AP EAPCET
Physics
Rotational motion
A balloon with mass 'm' is descending vertically with an acceleration 'a' (where a \(<\) g). The mass to be removed from the balloon, so that it starts moving vertically up with an acceleration 'a' is
AP EAPCET - 2025
AP EAPCET
Physics
Friction
The general solution of the differential equation \( \frac{dy}{dx} + \frac{\sec x}{\cos x + \sin x}y = \frac{\cos x}{1+\tan x} \) is
AP EAPCET - 2025
AP EAPCET
Mathematics
Differential Equations
\( \int \sqrt{x^2+x+1} \ dx \)
AP EAPCET - 2025
AP EAPCET
Mathematics
Integration
\( \int_{-1}^{4} \sqrt{\frac{4-x}{x+1}} \ dx = \)
AP EAPCET - 2025
AP EAPCET
Mathematics
Limits and Exponential Functions
The general solution of the differential equation \( \frac{dy}{dx} = \frac{x+y}{x-y} \) is
AP EAPCET - 2025
AP EAPCET
Mathematics
Differential Equations
The differential equation of the family of circles passing through the origin and having centre on X-axis is
AP EAPCET - 2025
AP EAPCET
Mathematics
Differential Equations
\( \int_{5\pi}^{25\pi} |\sin 2x + \cos 2x| \ dx = \)
AP EAPCET - 2025
AP EAPCET
Mathematics
Integration
\( \int_{0}^{\pi/4} \frac{\cos^2 x}{\cos^2 x + 4\sin^2 x} dx = \)
AP EAPCET - 2025
AP EAPCET
Mathematics
Integration
If \( k \in N \) then \( \lim_{n\to\infty} \left[ \frac{1}{n+1} + \frac{1}{n+2} + \frac{1}{n+3} + \dots + \frac{1}{kn} \right] = \)
(Note: The last term should be \( \frac{1}{n+ (k-1)n} = \frac{1}{kn} \) or sum up to \(n+(k-1)n\). The given form \(1/kn\) as the endpoint of the sum means sum from \(r=1\) to \((k-1)n\). The sum is usually \( \sum_{r=1}^{(k-1)n} \frac{1}{n+r} \). If the last term is \( \frac{1}{kn} \), it means \( n+r = kn \implies r = (k-1)n \). So it's \( \sum_{r=1}^{(k-1)n} \frac{1}{n+r} \).) Let's assume the sum goes up to \( \frac{1}{n+(k-1)n} = \frac{1}{kn} \). So the sum is \( \sum_{r=1}^{(k-1)n} \frac{1}{n+r} \). No, this seems to be \( \frac{1}{n+1} + \dots + \frac{1}{n+(kn-n)} \). The sum should be written as \( \sum_{i=1}^{(k-1)n} \frac{1}{n+i} \). The dots imply the denominator goes up. The last term is \( \frac{1}{kn} \). This means the sum is actually \( \frac{1}{n+1} + \frac{1}{n+2} + \dots + \frac{1}{n+(k-1)n} \). The number of terms is \( (k-1)n \).
AP EAPCET - 2025
AP EAPCET
Mathematics
Differentiation
\( \int \frac{dx}{12\cos x + 5\sin x} = \)
AP EAPCET - 2025
AP EAPCET
Mathematics
Integration
If \( \beta \) is an angle between the normals drawn to the curve \( x^2+3y^2=9 \) at the points \( (3\cos\theta, \sqrt{3}\sin\theta) \) and \( (-3\sin\theta, \sqrt{3}\cos\theta) \), \( \theta \in \left(0, \frac{\pi}{2}\right) \), then
AP EAPCET - 2025
AP EAPCET
Mathematics
Geometry
\( \int \left( \sum_{r=0}^{\infty} \frac{x^r 2^r}{r!} \right) dx = \)
AP EAPCET - 2025
AP EAPCET
Mathematics
Integration
\( \int \frac{13\cos 2x - 9\sin 2x}{3\cos 2x - 4\sin 2x} dx = \)
AP EAPCET - 2025
AP EAPCET
Mathematics
Integration
Which one of the following functions is monotonically increasing in its domain?
AP EAPCET - 2025
AP EAPCET
Mathematics
Geometry
If the area of a right angled triangle with hypotenuse 5 is maximum, then its perimeter is
AP EAPCET - 2025
AP EAPCET
Mathematics
Geometry
If \( \int \frac{\cos^3 x}{\sin^2 x + \sin^4 x} dx = c - \operatorname{cosec} x - f(x) \), then \( f\left(\frac{\pi}{2}\right) = \)
AP EAPCET - 2025
AP EAPCET
Mathematics
Exponential and Logarithmic Functions
If \( y = \tan^{-1}\left(\frac{x}{1+2x^2}\right) + \tan^{-1}\left(\frac{x}{1+6x^2}\right) \), then \( \frac{dy}{dx} = \)
AP EAPCET - 2025
AP EAPCET
Mathematics
Differentiability
If the tangent drawn at the point \( (x_1,y_1) \), \(x_1,y_1 \in N \) on the curve \( y = x^4 - 2x^3 + x^2 + 5x \) passes through origin, then \( x_1+y_1 = \)
AP EAPCET - 2025
AP EAPCET
Mathematics
Geometry
If g is the inverse of the function f(x) and \( g(x) = x + \tan x \) then, \( f'(x) = \)
AP EAPCET - 2025
AP EAPCET
Mathematics
Differential Equations
If \( \sqrt{x-xy} + \sqrt{y-xy} = 1 \), then \( \frac{dy}{dx} = \)
AP EAPCET - 2025
AP EAPCET
Mathematics
Continuity
\([x]\) denotes the greatest integer less than or equal to x. If \(\{x\}=x-[x]\) and \( \lim_{x\to 0} \frac{\sin^{-1}(x+[x])}{2-\{x\}} = \theta \), then \( \sin\theta + \cos\theta = \)
AP EAPCET - 2025
AP EAPCET
Mathematics
Continuity
If Q \( (\alpha, \beta, \gamma) \) is the harmonic conjugate of the point P(0,-7,1) with respect to the line segment joining the points (2,-5,3) and (-1,-8,0), then \( \alpha - \beta + \gamma = \)
AP EAPCET - 2025
AP EAPCET
Mathematics
Geometry
On a line with direction cosines l, m, n, \( A(x_1, y_1, z_1) \) is a fixed point. If \( B=(x_1+4kl, y_1+4km, z_1+4kn) \) and \( C=(x_1+kl, y_1+km, z_1+kn) \) (\(k>0\)) then the ratio in which the point B divides the line segment joining A and C is
AP EAPCET - 2025
AP EAPCET
Mathematics
Geometry
Prev
1
...
23
24
25
26
27
...
251
Next