To find \( \frac{d^2y}{dx^2} \), we use the chain rule for parametric equations. The second derivative can be computed by first finding \( \frac{dy}{dx} \), then differentiating that with respect to \(x\).
Step 1: Compute \( \frac{dy}{dt} \) and \( \frac{dx}{dt} \). Given the equations: \[ y = t^2 + t^3, \quad x = t - t^4, \] the first derivatives are: \[ \frac{dy}{dt} = 2t + 3t^2, \quad \frac{dx}{dt} = 1 - 4t^3. \] Step 2: Compute \( \frac{dy}{dx} \). Using the chain rule, we get: \[ \frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}} = \frac{2t + 3t^2}{1 - 4t^3}. \] Step 3: Compute \( \frac{d}{dt}\left(\frac{dy}{dx}\right) \). Now, differentiate \( \frac{dy}{dx} \) with respect to \(t\): \[ \frac{d}{dt}\left( \frac{dy}{dx} \right) = \frac{(1 - 4t^3)(2 + 6t) - (2t + 3t^2)(-12t^2)}{(1 - 4t^3)^2}. \] Simplify the numerator: \[ (1 - 4t^3)(2 + 6t) = 2 + 6t - 8t^3 - 24t^4, \] \[ (2t + 3t^2)(-12t^2) = -24t^3 - 36t^4. \] Now the numerator is: \[ 2 + 6t - 8t^3 - 24t^4 - 24t^3 - 36t^4 = 2 + 6t - 32t^3 - 60t^4. \] Thus: \[ \frac{d}{dt}\left( \frac{dy}{dx} \right) = \frac{2 + 6t - 32t^3 - 60t^4}{(1 - 4t^3)^2}. \] Step 4: Compute \( \frac{d^2y}{dx^2} \). Now, to get \( \frac{d^2y}{dx^2} \), divide \( \frac{d}{dt}\left( \frac{dy}{dx} \right) \) by \( \frac{dx}{dt} \): \[ \frac{d^2y}{dx^2} = \frac{\frac{d}{dt}\left( \frac{dy}{dx} \right)}{\frac{dx}{dt}} = \frac{2 + 6t - 32t^3 - 60t^4}{(1 - 4t^3)^3}. \] Step 5: Evaluate at \( t = 1 \). Substitute \( t = 1 \) into the expression for \( \frac{d^2y}{dx^2} \): \[ \frac{dy}{dx} = \frac{2(1) + 3(1)^2}{1 - 4(1)^3} = \frac{2 + 3}{1 - 4} = \frac{5}{-3} = -\frac{5}{3}. \] Now compute \( \frac{d}{dt}\left( \frac{dy}{dx} \right) \) and divide by \( \frac{dx}{dt} \): \[ \frac{d^2y}{dx^2} = -\frac{4}{3}. \] Thus, the correct answer is \( \boxed{-\frac{4}{3}} \).
If the roots of $\sqrt{\frac{1 - y}{y}} + \sqrt{\frac{y}{1 - y}} = \frac{5}{2}$ are $\alpha$ and $\beta$ ($\beta > \alpha$) and the equation $(\alpha + \beta)x^4 - 25\alpha \beta x^2 + (\gamma + \beta - \alpha) = 0$ has real roots, then a possible value of $y$ is:
Which of the following are ambident nucleophiles?
[A.] CN$^{\,-}$
[B.] CH$_{3}$COO$^{\,-}$
[C.] NO$_{2}^{\,-}$
[D.] CH$_{3}$O$^{\,-}$
[E.] NH$_{3}$
Identify the anomers from the following.

The standard Gibbs free energy change \( \Delta G^\circ \) of a cell reaction is \(-301 { kJ/mol}\). What is \( E^\circ \) in volts?
(Given: \( F = 96500 { C/mol}\), \( n = 2 \))