To find \( \frac{d^2y}{dx^2} \), we use the chain rule for parametric equations. The second derivative can be computed by first finding \( \frac{dy}{dx} \), then differentiating that with respect to \(x\).
Step 1: Compute \( \frac{dy}{dt} \) and \( \frac{dx}{dt} \). Given the equations: \[ y = t^2 + t^3, \quad x = t - t^4, \] the first derivatives are: \[ \frac{dy}{dt} = 2t + 3t^2, \quad \frac{dx}{dt} = 1 - 4t^3. \] Step 2: Compute \( \frac{dy}{dx} \). Using the chain rule, we get: \[ \frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}} = \frac{2t + 3t^2}{1 - 4t^3}. \] Step 3: Compute \( \frac{d}{dt}\left(\frac{dy}{dx}\right) \). Now, differentiate \( \frac{dy}{dx} \) with respect to \(t\): \[ \frac{d}{dt}\left( \frac{dy}{dx} \right) = \frac{(1 - 4t^3)(2 + 6t) - (2t + 3t^2)(-12t^2)}{(1 - 4t^3)^2}. \] Simplify the numerator: \[ (1 - 4t^3)(2 + 6t) = 2 + 6t - 8t^3 - 24t^4, \] \[ (2t + 3t^2)(-12t^2) = -24t^3 - 36t^4. \] Now the numerator is: \[ 2 + 6t - 8t^3 - 24t^4 - 24t^3 - 36t^4 = 2 + 6t - 32t^3 - 60t^4. \] Thus: \[ \frac{d}{dt}\left( \frac{dy}{dx} \right) = \frac{2 + 6t - 32t^3 - 60t^4}{(1 - 4t^3)^2}. \] Step 4: Compute \( \frac{d^2y}{dx^2} \). Now, to get \( \frac{d^2y}{dx^2} \), divide \( \frac{d}{dt}\left( \frac{dy}{dx} \right) \) by \( \frac{dx}{dt} \): \[ \frac{d^2y}{dx^2} = \frac{\frac{d}{dt}\left( \frac{dy}{dx} \right)}{\frac{dx}{dt}} = \frac{2 + 6t - 32t^3 - 60t^4}{(1 - 4t^3)^3}. \] Step 5: Evaluate at \( t = 1 \). Substitute \( t = 1 \) into the expression for \( \frac{d^2y}{dx^2} \): \[ \frac{dy}{dx} = \frac{2(1) + 3(1)^2}{1 - 4(1)^3} = \frac{2 + 3}{1 - 4} = \frac{5}{-3} = -\frac{5}{3}. \] Now compute \( \frac{d}{dt}\left( \frac{dy}{dx} \right) \) and divide by \( \frac{dx}{dt} \): \[ \frac{d^2y}{dx^2} = -\frac{4}{3}. \] Thus, the correct answer is \( \boxed{-\frac{4}{3}} \).
If the curves $$ 2x^2 + ky^2 = 30 \quad \text{and} \quad 3y^2 = 28x $$ cut each other orthogonally, then \( k = \)