To find the value of \( k \) for which the subnormal is constant, we use the formula for the subnormal of a curve \( y = f(x) \):
\[
\text{Subnormal} = y \cdot \frac{dy}{dx} \quad \text{at any point}.
\]
For the given function:
\[
y = \left(\frac{x}{2024}\right)^k.
\]
The first derivative of \( y \) with respect to \( x \) is:
\[
\frac{dy}{dx} = k \left(\frac{x}{2024}\right)^{k-1} \cdot \frac{1}{2024}.
\]
Now, the subnormal at any point is given by:
\[
\text{Subnormal} = y \cdot \frac{dy}{dx} = \left(\frac{x}{2024}\right)^k \cdot k \left(\frac{x}{2024}\right)^{k-1} \cdot \frac{1}{2024}.
\]
Simplifying this:
\[
\text{Subnormal} = k \cdot \left(\frac{x}{2024}\right)^{2k-1} \cdot \frac{1}{2024}.
\]
For the subnormal to be constant, the expression should not depend on \( x \). This happens when the power of \( x \) in the expression is 0, i.e., when:
\[
2k - 1 = 0 \quad \Rightarrow \quad k = \frac{1}{2}.
\]