Let \( s_n = 1 + \dfrac{(-1)^n}{n}, \, n \in \mathbb{N}. \) Then the sequence \(\{s_n\}\) is
Let \( f : \mathbb{R} \to \mathbb{R} \) be such that \( f, f', f'' \) are continuous with \( f > 0, f' > 0, f'' > 0. \) Then \( \displaystyle \lim_{x \to -\infty} \frac{f(x) + f'(x)}{2} \) is ............
Let \( f \) be a real-valued function of a real variable, such that \( |f^{(n)}(0)| \leq K \) for all \( n \in \mathbb{N} \), where \( K > 0. \) Which of the following is/are true?
If \( s_n = \dfrac{(-1)^n}{2^n + 3} \) and \( t_n = \dfrac{(-1)^n}{4n - 1}, \, n = 0, 1, 2, \dots, \) then
\[ \lim_{n \to \infty} \sigma_n = \text{.................} \text{ (correct up to one decimal place)}. \]