Step 1: Analyzing the given function.
We are given that \( f(0) = 1 \), \( f'(0) = 0 \), and \( f''(0) = -1 \). Since \( f''(0) = -1 \), the function \( f(x) \) has a quadratic behavior near \( x = 0 \). Therefore, we can approximate \( f(x) \) for small \( x \) as:
\[
f(x) \approx f(0) + \frac{f''(0)}{2} x^2 = 1 - \frac{x^2}{2}.
\]
Step 2: Evaluate \( f \left( \sqrt{\frac{2}{x}} \right) \).
We now evaluate \( f \left( \sqrt{\frac{2}{x}} \right) \). Using the approximation for \( f(x) \), we get:
\[
f \left( \sqrt{\frac{2}{x}} \right) \approx 1 - \frac{\left( \sqrt{\frac{2}{x}} \right)^2}{2} = 1 - \frac{1}{x}.
\]
Step 3: Evaluate the limit.
Now, we compute the limit:
\[
\lim_{x \to \infty} \left( 1 - \frac{1}{x} \right)^x.
\]
This is a standard limit and is known to approach \( \frac{1}{e} \). Thus, the value of the limit is \( \frac{1}{e} \approx 0.3679 \).
Step 4: Conclusion.
\[
\lim_{x \to \infty} \left( f \left( \sqrt{\frac{2}{x}} \right) \right)^x = \boxed{0.368}.
\]