Step 1: Find \( \lim_{n \to \infty} x_n. \)
\[
x_n = n^{1/n} = e^{\frac{\ln n}{n}}.
\]
As \( n \to \infty \), \( \frac{\ln n}{n} \to 0 \), so \( x_n \to e^0 = 1. \)
Step 2: Compute \( \lim_{n \to \infty} y_n. \)
\[
y_n = e^{1 - x_n} \to e^{1 - 1} = e^0 = 1.
\]
Wait—correction! We must find the limiting value more carefully.
Since \( x_n \approx 1 + \frac{\ln n}{n} \) for large \( n \),
\[
1 - x_n \approx -\frac{\ln n}{n}.
\]
Then
\[
y_n = e^{1 - x_n} = e^{-\frac{\ln n}{n}} = (e^{\ln n})^{-1/n} = n^{-1/n} \to 1.
\]
But we need to check scaling with the definition \( y_n = e^{1 - x_n} \). Substituting \( x_n \to 1 \),
\[
\lim_{n \to \infty} y_n = e^{1 - 1} = 1.
\]
Hence, \( \boxed{1} \).
Final Answer: \[ \boxed{1} \]