Step 1: Express the general term.
The \( n^{th} \) term is
\[
T_n = \frac{1}{n(n^2 - 1)} = \frac{1}{n(n-1)(n+1)}.
\]
Step 2: Partial fraction decomposition.
\[
\frac{1}{n(n-1)(n+1)} = \frac{A}{n-1} + \frac{B}{n} + \frac{C}{n+1}.
\]
Simplifying gives \( A = \frac{1}{2}, \, B = -1, \, C = \frac{1}{2}. \)
Thus,
\[
T_n = \frac{1}{2(n-1)} - \frac{1}{n} + \frac{1}{2(n+1)}.
\]
Step 3: Write as telescoping series.
\[
S_N = \sum_{n=2}^{N} T_n = \frac{1}{2}\left( \frac{1}{1} - \frac{1}{2} \right) + \frac{1}{2}\left( \frac{1}{2} - \frac{1}{3} \right) + \cdots
\]
On simplification, most terms cancel out.
Step 4: Limit as \( N \to \infty. \)
The sum converges to
\[
S = \frac{1}{4}.
\]
Final Answer: \[ \boxed{\frac{1}{4}} \]