$$\text{Let } a_n = \begin{cases} 2 + \dfrac{(-1)^{\frac{n-1}{2}}}{n}, & \text{if } n \text{ is odd} \\ 1 + \dfrac{1}{2^n}, & \text{if } n \text{ is even} \end{cases}, \quad n \in \mathbb{N}.$$
Then which one of the following is TRUE?
\( \sup \{a_n \mid n \in \mathbb{N} \} = 2 \) and \( \inf \{a_n \mid n \in \mathbb{N} \} = 1 \)
Step 1: Analyze the sequence for odd values of n
For odd $n$, we have $n = 2k+1$ where $k \geq 0$, so $\frac{n-1}{2} = k$.
$$a_n = 2 + \frac{(-1)^k}{n}$$
Let's compute some values:
Step 2: Analyze the sequence for even values of n
For even $n$: $$a_n = 1 + \frac{1}{2^n}$$
Step 3: Find supremum and infimum
From our analysis:
For odd $n$:
For even $n$:
Therefore: $$\sup{a_n \mid n \in \mathbb{N}} = 3$$ $$\inf{a_n \mid n \in \mathbb{N}} = 1$$
(The infimum is 1 because the even subsequence approaches 1, though it never reaches it)
Step 4: Find lim sup and lim inf
$$\limsup_{n \to \infty} a_n = \max{\left\{\lim_{n \to \infty, n \text{ odd}} a_n, \lim_{n \to \infty, n \text{ even}} a_n\right\}} = \max{2, 1} = 2$$
$$\liminf_{n \to \infty} a_n = \min{\left\{\lim_{n \to \infty, n \text{ odd}} a_n, \lim_{n \to \infty, n \text{ even}} a_n\right\}} = \min{2, 1} = 1$$
Answer: Option (A)