Question:

$\displaystyle\lim_{x\to0} \sqrt{\frac{x-\sin x}{x+\sin^{2}x}} $ is equal to

Updated On: May 24, 2022
  • 1
  • 0
  • $\infty$
  • None of these
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is B

Solution and Explanation

$\displaystyle\lim_{x\to0} \sqrt{\frac{x-\sin x}{x+\sin^{2}x}} = \displaystyle\lim_{x\to0} \sqrt{\frac{1- \frac{\sin x}{x}}{1+ \frac{\sin^{2}x}{x}}} $
$=\displaystyle\lim_{x\to0} \sqrt{\frac{1- \frac{\sin x}{x}}{1+ \left(\frac{\sin x}{x}\right)\sin x}} = \sqrt{\frac{1-1}{1+1\times0}} = 0 $
Was this answer helpful?
0
0