3:5
5:4
4:5
For objects with equal kinetic energies \(\left(\frac{p_1^2}{2m_1} = \frac{p_2^2}{2m_2}\right)\), we have:
\[\frac{p_1}{p_2} = \sqrt{\frac{m_1}{m_2}}\]
Substituting \(m_1 = 4 \, \text{g}\) and \(m_2 = 25 \, \text{g}\):
\[\frac{p_1}{p_2} = \sqrt{\frac{4}{25}} = \frac{2}{5}\]
Thus, the ratio of their momenta is 2 : 5.
A bob of mass \(m\) is suspended at a point \(O\) by a light string of length \(l\) and left to perform vertical motion (circular) as shown in the figure. Initially, by applying horizontal velocity \(v_0\) at the point ‘A’, the string becomes slack when the bob reaches at the point ‘D’. The ratio of the kinetic energy of the bob at the points B and C is:
Let \( S = \left\{ m \in \mathbb{Z} : A^m + A^m = 3I - A^{-6} \right\} \), where
\[ A = \begin{bmatrix} 2 & -1 \\ 1 & 0 \end{bmatrix} \]Then \( n(S) \) is equal to ______.
The number of 6-letter words, with or without meaning, that can be formed using the letters of the word MATHS such that any letter that appears in the word must appear at least twice, is $ 4 \_\_\_\_\_$.
Let \( f : (0, \infty) \to \mathbb{R} \) be a twice differentiable function. If for some \( a \neq 0 \), } \[ \int_0^a f(x) \, dx = f(a), \quad f(1) = 1, \quad f(16) = \frac{1}{8}, \quad \text{then } 16 - f^{-1}\left( \frac{1}{16} \right) \text{ is equal to:}\]
Kinetic energy of an object is the measure of the work it does as a result of its motion. Kinetic energy is the type of energy that an object or particle has as a result of its movement. When an object is subjected to a net force, it accelerates and gains kinetic energy as a result. Kinetic energy is a property of a moving object or particle defined by both its mass and its velocity. Any combination of motions is possible, including translation (moving along a route from one spot to another), rotation around an axis, vibration, and any combination of motions.