Two long parallel conductors \(S_1\) and \(S_2\) are separated by a distance \(10\) cm and carrying currents of \(4\) A and \(2\) A respectively. The conductors are placed along x-axis in X–Y plane. There is a point P located between the conductors (as shown in figure). A charge particle of \(3π\) coulomb is passing through the point P with velocity \(\overrightarrow v=(2\hat i+3\hat j)\) m/s; where \(\hat i\) and \(\hat j\) represents unit vector along x & y axis respectively. The force acting on the charge particle is \(4π×10^{−5}(−x\hat i+2\hat j)N\). The value of x is:
Field at P is
=\(\bigg(\frac{µ_0×i_1}{2πr_1}–\frac{µ_0i_2}{2πr_2}\bigg)\bigg(−\hat k\bigg)\)
=\(−\bigg(\frac{µ_04}{2π×0.04}−\frac{µ_0×2}{2π×0.06}\bigg)\hat k=–\frac{µ_0×200}{6π}\hat k\)
Therefore, the force
\(\overrightarrow F=\overrightarrow {qv} ×\overrightarrow B\)
= \(3π(2\hat i+3\hat j)×\bigg(−\bigg(\frac{µ_0×200}{6π}\bigg)\hat k\bigg)\)
=\(3π\bigg(\frac{200µ_0}{3π\hat j}−\frac{100µ_0}{π}\hat i)\)
= \(200µ_0\hat j–300µ_0\hat i\)
= \(4π×10^{−5}(2\hat j–3\hat i)\)
\(Hence,\) \(x = 3\)
Assuming in forward bias condition there is a voltage drop of \(0.7\) V across a silicon diode, the current through diode \(D_1\) in the circuit shown is ________ mA. (Assume all diodes in the given circuit are identical) 


For the given logic gate circuit, which of the following is the correct truth table ? 
The equivalent resistance between the points \(A\) and \(B\) in the given circuit is \[ \frac{x}{5}\,\Omega. \] Find the value of \(x\). 
Method used for separation of mixture of products (B and C) obtained in the following reaction is: 
In the following \(p\text{–}V\) diagram, the equation of state along the curved path is given by \[ (V-2)^2 = 4ap, \] where \(a\) is a constant. The total work done in the closed path is: 
Semiconductors are a crystalline solid materials, whose electrical conductivity lies between a conductor and an insulator. Semiconductors are mainly used in the manufacturing of electronic devices like capacitors, transistors, diodes, Integrated circuits, etc.