Given that: \[ \text{CaCO}_3 \rightarrow \text{CaO} + \text{CO}_2 \] We start by calculating the mass of CaCO$_3$: \[ \text{mass of CaCO}_3 = \frac{150 \times 75}{100} = 112.5 \, \text{kg} \] Next, calculate the moles of CaCO$_3$: \[ n_{\text{CaCO}_3} = \frac{\text{mass}}{\text{molar mass of CaCO}_3} = \frac{1125000}{100} = 1125 \, \text{moles} \] Since each mole of CaCO$_3$ produces 1 mole of CaO, the moles of CaO formed will be the same: \[ n_{\text{CaO}} = 1125 \, \text{moles} \] Now, we calculate the mass of CaO: \[ \text{mass of CaO} = n_{\text{CaO}} \times \text{molar mass of CaO} = 1125 \times 56 = 63000 \, \text{grams} = 63 \, \text{kg} \]
Thus, the amount of calcium oxide produced is 63 kg.
If 0.01 mol of $\mathrm{P_4O_{10}}$ is removed from 0.1 mol, then the remaining molecules of $\mathrm{P_4O_{10}}$ will be:
Let $ P_n = \alpha^n + \beta^n $, $ n \in \mathbb{N} $. If $ P_{10} = 123,\ P_9 = 76,\ P_8 = 47 $ and $ P_1 = 1 $, then the quadratic equation having roots $ \alpha $ and $ \frac{1}{\beta} $ is: