The remainder when \( 64^{64} \) is divided by 7 is equal to:
We are asked to find the remainder when \( 64^{64} \) is divided by 7. First, we reduce \( 64 \) modulo 7: \[ 64 \div 7 = 9 \, \text{(quotient)}, \, \text{remainder} = 64 - 9 \times 7 = 64 - 63 = 1 \] Thus, \( 64 \equiv 1 \, (\text{mod} \, 7) \). Now, since \( 64^{64} \equiv 1^{64} \, (\text{mod} \, 7) \), we get: \[ 64^{64} \equiv 1 \, (\text{mod} \, 7) \] Hence, the remainder when \( 64^{64} \) is divided by 7 is \( \boxed{1} \).
Therefore, the correct answer is (D) 1.
If $ \theta \in [-2\pi,\ 2\pi] $, then the number of solutions of $$ 2\sqrt{2} \cos^2\theta + (2 - \sqrt{6}) \cos\theta - \sqrt{3} = 0 $$ is:
A thin transparent film with refractive index 1.4 is held on a circular ring of radius 1.8 cm. The fluid in the film evaporates such that transmission through the film at wavelength 560 nm goes to a minimum every 12 seconds. Assuming that the film is flat on its two sides, the rate of evaporation is:
The major product (A) formed in the following reaction sequence is
