\(\frac{CV^2}{4}\)
\(\frac{1}{2}CV^2\)
When the capacitors are connected, the potential of the combined system is given by:
\[ V_c = \frac{q_{net}}{C_{net}} = \frac{CV + 2CV}{2C} = \frac{3V}{2} \]
The loss of energy in the system can be calculated as:
\[ \text{Loss of energy} = \frac{1}{2}CV^2 + \frac{1}{2}C(2V)^2 - \frac{1}{2}C \left(\frac{3V}{2}\right)^2 \]
Simplifying this expression:
\[ \text{Loss of energy} = \frac{1}{2}CV^2 + \frac{1}{2}C(4V^2) - \frac{1}{2}C \left(\frac{9V^2}{4}\right) \]
\[ \text{Loss of energy} = \frac{CV^2}{2} + 2CV^2 - \frac{9CV^2}{8} \]
\[ \text{Loss of energy} = \frac{4CV^2}{8} + \frac{16CV^2}{8} - \frac{9CV^2}{8} \]
\[ \text{Loss of energy} = \frac{CV^2}{4} \]
Let $ f: \mathbb{R} \to \mathbb{R} $ be a twice differentiable function such that $$ f''(x)\sin\left(\frac{x}{2}\right) + f'(2x - 2y) = (\cos x)\sin(y + 2x) + f(2x - 2y) $$ for all $ x, y \in \mathbb{R} $. If $ f(0) = 1 $, then the value of $ 24f^{(4)}\left(\frac{5\pi}{3}\right) $ is: