To determine the amount of bromine required to convert 2 g of phenol into 2,4,6-tribromophenol, we need to consider the balanced chemical reaction and the stoichiometry involved. Let's go through the steps:
Therefore, the amount of bromine required is approximately 10.22 g, corresponding to the correct option: 10.22 g. This calculation confirms that option \(10.22 \text{ g}\) is correct.
To determine the amount of bromine needed to convert 2 g of phenol into 2,4,6-tribromophenol, we follow this procedure:
Step 1: Calculate the molar mass of phenol (C6H5OH)
Molar mass of C = 12 g/mol
Molar mass of H = 1 g/mol
Molar mass of O = 16 g/mol
Molar mass of phenol = 6(12) + 6(1) + 16 = 94 g/mol
Step 2: Calculate the number of moles of phenol
Number of moles = mass / molar mass = 2 g / 94 g/mol ≈ 0.0213 mol
Step 3: Determine the reaction and molar mass of tribromophenol
Reaction: C6H5OH + 3 Br2 → C6H2Br3OH + 3 HBr
Molar mass of Br2 = 2(80) = 160 g/mol
Step 4: Calculate bromine required for the reaction
Bromine required per mol of phenol = 3 mols of Br2
Number of moles of Br2 = 3 × 0.0213 mol = 0.0639 mol
Mass of Br2 = moles × molar mass = 0.0639 mol × 160 g/mol = 10.224 g
Thus, the amount of bromine required is 10.22 g.
Consider the following two reactions A and B: 
The numerical value of [molar mass of $x$ + molar mass of $y$] is ___.
Consider an A.P. $a_1,a_2,\ldots,a_n$; $a_1>0$. If $a_2-a_1=-\dfrac{3}{4}$, $a_n=\dfrac{1}{4}a_1$, and \[ \sum_{i=1}^{n} a_i=\frac{525}{2}, \] then $\sum_{i=1}^{17} a_i$ is equal to
