Step 1: Calculate the extra charge.
The change in charge (\(\Delta q\)) due to the introduction of the dielectric is given by:
\(\Delta q = (KC - C)V\)
where K is the dielectric constant, C is the capacitance, and V is the voltage.
\(\Delta q = (2 \times 40 \times 10^{-6} \text{ F} - 40 \times 10^{-6} \text{ F}) \times 100 \text{ V}\)
\(\Delta q = (80 - 40) \times 10^{-6} \text{ F} \times 100 \text{ V}\)
\(\Delta q = 40 \times 10^{-6} \text{ F} \times 100 \text{ V}\)
\(\Delta q = 4000 \times 10^{-6} \text{ C} = 4 \times 10^{-3} \text{ C} = 4 \text{ mC}\)
Step 2: Calculate the change in electrostatic energy.
The change in electrostatic energy (\(\Delta U\)) is given by:
\(\Delta U = \frac{1}{2} C' V^2 - \frac{1}{2} C V^2 = \frac{1}{2} (KC - C) V^2 = \frac{1}{2} (K - 1) C V^2\)
\(\Delta U = \frac{1}{2} (2 - 1) (40 \times 10^{-6} \text{ F}) (100 \text{ V})^2\)
\(\Delta U = \frac{1}{2} (1) (40 \times 10^{-6} \text{ F}) (10000 \text{ V}^2)\)
\(\Delta U = \frac{1}{2} (40 \times 10^{-2}) \text{ J}\) \(\Delta U = 20 \times 10^{-2} \text{ J} = 0.2 \text{ J}\)
Identify the valid statements relevant to the given circuit at the instant when the key is closed.
\( \text{A} \): There will be no current through resistor R.
\( \text{B} \): There will be maximum current in the connecting wires.
\( \text{C} \): Potential difference between the capacitor plates A and B is minimum.
\( \text{D} \): Charge on the capacitor plates is minimum.
Choose the correct answer from the options given below: