To determine the dimension of \(\frac{ABC}{D}\), we need to analyze the given expression for the position of a particle on the x-axis:
\(x(t) = A \sin t + B \cos^2 t + Ct^2 + D\)
Let's discuss the terms one by one:
Now, we can determine the dimension of the expression \(\frac{ABC}{D}\):
\[\frac{ABC}{D} = \frac{[L][L][L T^{-2}]}{[L]}\]Simplifying this, we get:
\[[L][L][L T^{-2}]/[L] = [L^2 T^{-2}]\]Therefore, the dimension of \(\frac{ABC}{D}\) is \(L^2 T^{-2}\).
The correct answer is therefore:
\(L^2 T^{-2}\)
To find the dimension of \( \frac{ABC}{D} \), we start by analyzing the given equation for the position of a particle: \( x(t) = A \sin t + B \cos^2 t + Ct^2 + D \). The position \( x(t) \) has the dimension of length, denoted as \( [x] = L \).
Each term in the equation must also have the dimension of length.
Now, we calculate the dimension of \( \frac{ABC}{D} \):
\( \left[\frac{ABC}{D}\right] = \frac{L \times L \times \frac{L}{T^2}}{L} = \frac{L^3}{L \times T^2} = L^2 T^{-2} \).
Therefore, the dimension of \( \frac{ABC}{D} \) is \( L^2 T^{-2} \).
Let $ P_n = \alpha^n + \beta^n $, $ n \in \mathbb{N} $. If $ P_{10} = 123,\ P_9 = 76,\ P_8 = 47 $ and $ P_1 = 1 $, then the quadratic equation having roots $ \alpha $ and $ \frac{1}{\beta} $ is:
Two blocks of masses \( m \) and \( M \), \( (M > m) \), are placed on a frictionless table as shown in figure. A massless spring with spring constant \( k \) is attached with the lower block. If the system is slightly displaced and released then \( \mu = \) coefficient of friction between the two blocks.
(A) The time period of small oscillation of the two blocks is \( T = 2\pi \sqrt{\dfrac{(m + M)}{k}} \)
(B) The acceleration of the blocks is \( a = \dfrac{kx}{M + m} \)
(\( x = \) displacement of the blocks from the mean position)
(C) The magnitude of the frictional force on the upper block is \( \dfrac{m\mu |x|}{M + m} \)
(D) The maximum amplitude of the upper block, if it does not slip, is \( \dfrac{\mu (M + m) g}{k} \)
(E) Maximum frictional force can be \( \mu (M + m) g \)
Choose the correct answer from the options given below:
Let \( f : \mathbb{R} \to \mathbb{R} \) be a twice differentiable function such that \[ (\sin x \cos y)(f(2x + 2y) - f(2x - 2y)) = (\cos x \sin y)(f(2x + 2y) + f(2x - 2y)), \] for all \( x, y \in \mathbb{R}. \)
If \( f'(0) = \frac{1}{2} \), then the value of \( 24f''\left( \frac{5\pi}{3} \right) \) is: