Question:

Two conductors have the same resistances at \( 0^\circ \text{C} \) but their temperature coefficients of resistance are \( \alpha_1 \) and \( \alpha_2 \). The respective temperature coefficients for their series and parallel combinations are:

Updated On: Nov 4, 2025
  • \( \alpha_1 + \alpha_2, \quad \frac{\alpha_1 + \alpha_2}{2} \)
  • \( \frac{\alpha_1 + \alpha_2}{2}, \quad \frac{\alpha_1 + \alpha_2}{2} \)
  • \( \alpha_1 + \alpha_2, \quad \frac{\alpha_1 \alpha_2}{\alpha_1 + \alpha_2} \)
  • \( \frac{\alpha_1 + \alpha_2}{2}, \quad \alpha_1 + \alpha_2 \)
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is B

Approach Solution - 1

To determine the temperature coefficients for the series and parallel combinations of two conductors having the same resistances at \( 0^\circ \text{C} \), and temperature coefficients \( \alpha_1 \) and \( \alpha_2 \), we start by understanding the basic concept of temperature coefficients of resistance. 

The resistance \( R_T \) of a conductor at a temperature \( T \) is given by the formula:

\(R_T = R_0(1 + \alpha \Delta T)\)

where \( R_0 \) is the resistance at the reference temperature (often \( 0^\circ \text{C} \)), \( \alpha \) is the temperature coefficient of resistance, and \( \Delta T = T - T_0 \).

  1. For the series combination of the two conductors:

The total resistance in series, \( R_s \), is:

\(R_s = R_1 + R_2 = R_0(1 + \alpha_1 \Delta T) + R_0(1 + \alpha_2 \Delta T)\) \(= 2R_0 + R_0(\alpha_1 + \alpha_2) \Delta T\)

Thus, the effective temperature coefficient, \( \alpha_s \), for the series is:

\(\frac{R_s - 2R_0}{2R_0 \Delta T} = \frac{\alpha_1 + \alpha_2}{2}\)

  1. For the parallel combination of the two conductors:

The total resistance in parallel, \( R_p \), can be found using:

\(\frac{1}{R_p} = \frac{1}{R_1} + \frac{1}{R_2} = \frac{1}{R_0(1 + \alpha_1 \Delta T)} + \frac{1}{R_0(1 + \alpha_2 \Delta T)}\)

For small values of \( \alpha \Delta T \), this simplifies to:

\(R_p = \frac{R_0}{1 + \frac{\alpha_1 + \alpha_2}{2} \Delta T}\)

Thus, the effective temperature coefficient, \( \alpha_p \), for the parallel combination is also:

\(\frac{\alpha_1 + \alpha_2}{2}\)

Therefore, the correct answer for the respective temperature coefficients for their series and parallel combinations is:

Option: \( \frac{\alpha_1 + \alpha_2}{2}, \quad \frac{\alpha_1 + \alpha_2}{2} \)

Was this answer helpful?
0
0
Hide Solution
collegedunia
Verified By Collegedunia

Approach Solution -2

Series:

\[ R_{\text{eq}} = R_1 + R_2 \]

\[ 2R(1 + \alpha_{\text{eq}} \Delta \theta) = R(1 + \alpha_1 \Delta \theta) + R(1 + \alpha_2 \Delta \theta) \]

\[ 2R(1 + \alpha_{\text{eq}} \Delta \theta) = 2R + (\alpha_1 + \alpha_2)R \Delta \theta \]

\[ \alpha_{\text{eq}} = \frac{\alpha_1 + \alpha_2}{2} \]

Parallel:

\[ \frac{1}{R_{\text{eq}}} = \frac{1}{R_1} + \frac{1}{R_2} \]

\[ \frac{\pi}{2} \frac{1}{1 + \alpha_{\text{eq}} \Delta \theta} = \frac{1}{R(1 + \alpha_1 \Delta \theta)} + \frac{1}{R(1 + \alpha_2 \Delta \theta)} \]

\[ \frac{2}{1 + \alpha_{\text{eq}} \Delta \theta} = \frac{1}{1 + \alpha_1 \Delta \theta} + \frac{1}{1 + \alpha_2 \Delta \theta} \]

\[ \frac{2}{1 + \alpha_{\text{eq}} \Delta \theta} = \frac{1 + \alpha_2 \Delta \theta + 1 + \alpha_1 \Delta \theta}{(1 + \alpha_1 \Delta \theta)(1 + \alpha_2 \Delta \theta)} \]

\[ 2[(1 + \alpha_1 \Delta \theta)(1 + \alpha_2 \Delta \theta)] = [2 + (\alpha_1 + \alpha_2) \Delta \theta][1 + \alpha_{\text{eq}} \Delta \theta] \]

\[ 2 \left[1 + \alpha_1 \Delta \theta + \alpha_2 \Delta \theta + \alpha_1 \alpha_2 \Delta \theta^2 \right] = 2 + 2(\alpha_1 + \alpha_2) \Delta \theta + (\alpha_1 + \alpha_2) \Delta \theta \]

Neglecting small terms:

\[ 2 + 2(\alpha_1 + \alpha_2) \Delta \theta = 2 + 2 \alpha_{\text{eq}} \Delta \theta + (\alpha_1 + \alpha_2) \Delta \theta \]

\[ (\alpha_1 + \alpha_2) \Delta \theta = 2 \alpha_{\text{eq}} \Delta \theta \]

\[ \alpha_{\text{eq}} = \frac{\alpha_1 + \alpha_2}{2} \]

Was this answer helpful?
0
0