Series:
\[ R_{\text{eq}} = R_1 + R_2 \]
\[ 2R(1 + \alpha_{\text{eq}} \Delta \theta) = R(1 + \alpha_1 \Delta \theta) + R(1 + \alpha_2 \Delta \theta) \]
\[ 2R(1 + \alpha_{\text{eq}} \Delta \theta) = 2R + (\alpha_1 + \alpha_2)R \Delta \theta \]
\[ \alpha_{\text{eq}} = \frac{\alpha_1 + \alpha_2}{2} \]
Parallel:
\[ \frac{1}{R_{\text{eq}}} = \frac{1}{R_1} + \frac{1}{R_2} \]
\[ \frac{\pi}{2} \frac{1}{1 + \alpha_{\text{eq}} \Delta \theta} = \frac{1}{R(1 + \alpha_1 \Delta \theta)} + \frac{1}{R(1 + \alpha_2 \Delta \theta)} \]
\[ \frac{2}{1 + \alpha_{\text{eq}} \Delta \theta} = \frac{1}{1 + \alpha_1 \Delta \theta} + \frac{1}{1 + \alpha_2 \Delta \theta} \]
\[ \frac{2}{1 + \alpha_{\text{eq}} \Delta \theta} = \frac{1 + \alpha_2 \Delta \theta + 1 + \alpha_1 \Delta \theta}{(1 + \alpha_1 \Delta \theta)(1 + \alpha_2 \Delta \theta)} \]
\[ 2[(1 + \alpha_1 \Delta \theta)(1 + \alpha_2 \Delta \theta)] = [2 + (\alpha_1 + \alpha_2) \Delta \theta][1 + \alpha_{\text{eq}} \Delta \theta] \]
\[ 2 \left[1 + \alpha_1 \Delta \theta + \alpha_2 \Delta \theta + \alpha_1 \alpha_2 \Delta \theta^2 \right] = 2 + 2(\alpha_1 + \alpha_2) \Delta \theta + (\alpha_1 + \alpha_2) \Delta \theta \]
Neglecting small terms:
\[ 2 + 2(\alpha_1 + \alpha_2) \Delta \theta = 2 + 2 \alpha_{\text{eq}} \Delta \theta + (\alpha_1 + \alpha_2) \Delta \theta \]
\[ (\alpha_1 + \alpha_2) \Delta \theta = 2 \alpha_{\text{eq}} \Delta \theta \]
\[ \alpha_{\text{eq}} = \frac{\alpha_1 + \alpha_2}{2} \]
Given below are two statements. One is labelled as Assertion (A) and the other is labelled as Reason (R):
Assertion (A): In an insulated container, a gas is adiabatically shrunk to half of its initial volume. The temperature of the gas decreases.
Reason (R): Free expansion of an ideal gas is an irreversible and an adiabatic process.
In the light of the above statements, choose the correct answer from the options given below: