Series:
\[ R_{\text{eq}} = R_1 + R_2 \]
\[ 2R(1 + \alpha_{\text{eq}} \Delta \theta) = R(1 + \alpha_1 \Delta \theta) + R(1 + \alpha_2 \Delta \theta) \]
\[ 2R(1 + \alpha_{\text{eq}} \Delta \theta) = 2R + (\alpha_1 + \alpha_2)R \Delta \theta \]
\[ \alpha_{\text{eq}} = \frac{\alpha_1 + \alpha_2}{2} \]
Parallel:
\[ \frac{1}{R_{\text{eq}}} = \frac{1}{R_1} + \frac{1}{R_2} \]
\[ \frac{\pi}{2} \frac{1}{1 + \alpha_{\text{eq}} \Delta \theta} = \frac{1}{R(1 + \alpha_1 \Delta \theta)} + \frac{1}{R(1 + \alpha_2 \Delta \theta)} \]
\[ \frac{2}{1 + \alpha_{\text{eq}} \Delta \theta} = \frac{1}{1 + \alpha_1 \Delta \theta} + \frac{1}{1 + \alpha_2 \Delta \theta} \]
\[ \frac{2}{1 + \alpha_{\text{eq}} \Delta \theta} = \frac{1 + \alpha_2 \Delta \theta + 1 + \alpha_1 \Delta \theta}{(1 + \alpha_1 \Delta \theta)(1 + \alpha_2 \Delta \theta)} \]
\[ 2[(1 + \alpha_1 \Delta \theta)(1 + \alpha_2 \Delta \theta)] = [2 + (\alpha_1 + \alpha_2) \Delta \theta][1 + \alpha_{\text{eq}} \Delta \theta] \]
\[ 2 \left[1 + \alpha_1 \Delta \theta + \alpha_2 \Delta \theta + \alpha_1 \alpha_2 \Delta \theta^2 \right] = 2 + 2(\alpha_1 + \alpha_2) \Delta \theta + (\alpha_1 + \alpha_2) \Delta \theta \]
Neglecting small terms:
\[ 2 + 2(\alpha_1 + \alpha_2) \Delta \theta = 2 + 2 \alpha_{\text{eq}} \Delta \theta + (\alpha_1 + \alpha_2) \Delta \theta \]
\[ (\alpha_1 + \alpha_2) \Delta \theta = 2 \alpha_{\text{eq}} \Delta \theta \]
\[ \alpha_{\text{eq}} = \frac{\alpha_1 + \alpha_2}{2} \]
Statement-1: \( \text{ClF}_3 \) has 3 possible structures.
Statement-2: \( \text{III} \) is the most stable structure due to least lone pair-bond pair (lp-bp) repulsion.
Which of the following options is correct?
The largest $ n \in \mathbb{N} $ such that $ 3^n $ divides 50! is: