The maximum intensity \( I_{\text{max}} \) in the superimposed beam is given by:
\[I_{\text{max}} = \left( \sqrt{I} + \sqrt{4I} \right)^2 = \left( \sqrt{I} + 2\sqrt{I} \right)^2 = (3\sqrt{I})^2 = 9I\]
The minimum intensity \( I_{\text{min}} \) is given by:
\[I_{\text{min}} = \left( \sqrt{4I} - \sqrt{I} \right)^2 = \left( 2\sqrt{I} - \sqrt{I} \right)^2 = (\sqrt{I})^2 = I\]
Therefore, the difference \( I_{\text{max}} - I_{\text{min}} \) is:
\[x = I_{\text{max}} - I_{\text{min}} = 9I - I = 8I\]
Let $ P_n = \alpha^n + \beta^n $, $ n \in \mathbb{N} $. If $ P_{10} = 123,\ P_9 = 76,\ P_8 = 47 $ and $ P_1 = 1 $, then the quadratic equation having roots $ \alpha $ and $ \frac{1}{\beta} $ is: