The maximum intensity \( I_{\text{max}} \) in the superimposed beam is given by:
\[I_{\text{max}} = \left( \sqrt{I} + \sqrt{4I} \right)^2 = \left( \sqrt{I} + 2\sqrt{I} \right)^2 = (3\sqrt{I})^2 = 9I\]
The minimum intensity \( I_{\text{min}} \) is given by:
\[I_{\text{min}} = \left( \sqrt{4I} - \sqrt{I} \right)^2 = \left( 2\sqrt{I} - \sqrt{I} \right)^2 = (\sqrt{I})^2 = I\]
Therefore, the difference \( I_{\text{max}} - I_{\text{min}} \) is:
\[x = I_{\text{max}} - I_{\text{min}} = 9I - I = 8I\]
Let \[ I(x) = \int \frac{dx}{(x-11)^{\frac{11}{13}} (x+15)^{\frac{15}{13}}} \] If \[ I(37) - I(24) = \frac{1}{4} \left( b^{\frac{1}{13}} - c^{\frac{1}{13}} \right) \] where \( b, c \in \mathbb{N} \), then \[ 3(b + c) \] is equal to:
For the thermal decomposition of \( N_2O_5(g) \) at constant volume, the following table can be formed, for the reaction mentioned below: \[ 2 N_2O_5(g) \rightarrow 2 N_2O_4(g) + O_2(g) \] Given: Rate constant for the reaction is \( 4.606 \times 10^{-2} \text{ s}^{-1} \).