In the context of optics, to find the graphical relationship between the object distance (\(u\)) and the image distance (\(v\)) for a convex lens with focal length (\(f\)), we employ the lens formula, which states:
\(\frac{1}{f} = \frac{1}{v} + \frac{1}{u}\)
This equation rearranges to:
\(uv = f(v+u)\)
or
\(v = \frac{uf}{u-f}\)
Given the requirement \(|u| > f\), it follows that both the object and image distances relate inversely, due to the algebraic form of the equation. The term \((u-f)\) in the denominator ensures that with increasing \(u\), \(v\) does not proportionally increase but rather decreases, highlighting an inverse relationship. This characteristic is depicted graphically as an inverse graph. Therefore, the correct graphical representation of the relationship between \(u\) and \(v\) when \(|u| > f\) for a convex lens is:
Inverse graph
Light from a point source in air falls on a spherical glass surface (refractive index, \( \mu = 1.5 \) and radius of curvature \( R = 50 \) cm). The image is formed at a distance of 200 cm from the glass surface inside the glass. The magnitude of distance of the light source from the glass surface is 1cm.
A symmetric thin biconvex lens is cut into four equal parts by two planes AB and CD as shown in the figure. If the power of the original lens is 4D, then the power of a part of the divided lens is:

