Step 1: Trace the path of the ray of light through the prism. When a ray of light enters a prism with refractive index greater than that of the surrounding medium (typically air), it bends towards the normal at the first interface (at angle of incidence \(i\)), passes through the prism, and bends away from the normal at the second interface (at angle of exit \(e\)). The prism has an apex angle \(A\).
Step 2: Derive the formula for the angle of deviation (\(\delta\)). The angle of deviation (\(\delta\)) is the angle by which the light ray deviates from its original direction after passing through the prism. It can be expressed in terms of the angle of incidence (\(i\)), the angle of exit (\(e\)), and the prism's apex angle (\(A\)) as follows: \[ \delta = i + e - A \] This relationship arises because the external deviation is equal to the sum of the angles of incidence and emergence minus the angle of the prism.
Step 3: Graph the variation of \(\delta\) with \(i\). The relationship between \(\delta\) and \(i\) is typically non-linear, showing that \(\delta\) decreases with an increase in \(i\) up to a minimum value (at the minimum deviation condition) and then increases. The graph of \(\delta\) versus \(i\) will have a "U" shape, indicating the minimum deviation occurs when the light ray passes symmetrically through the prism.