Rewrite left side using product-to-sum:
\[
4 \cos 2\theta \cos 3\theta = 2 \left[ \cos(5\theta) + \cos(\theta) \right].
\]
Given equation becomes
\[
2 [ \cos 5\theta + \cos \theta ] = \sec \theta = \frac{1}{\cos \theta}.
\]
Multiply both sides by $\cos \theta$ (exclude values where $\cos \theta=0$):
\[
2 \cos \theta \cos 5\theta + 2 \cos^2 \theta = 1.
\]
Use product-to-sum again for $\cos \theta \cos 5\theta$:
\[
\cos \theta \cos 5\theta = \frac{1}{2} [\cos 6\theta + \cos 4\theta].
\]
So,
\[
2 \times \frac{1}{2} [\cos 6\theta + \cos 4\theta] + 2 \cos^2 \theta = 1,
\]
which simplifies to
\[
\cos 6\theta + \cos 4\theta + 2 \cos^2 \theta = 1.
\]
Use $\cos^2 \theta = \frac{1 + \cos 2\theta}{2}$,
\[
\cos 6\theta + \cos 4\theta + 1 + \cos 2\theta = 1,
\]
so
\[
\cos 6\theta + \cos 4\theta + \cos 2\theta = 0.
\]
Using sum-to-product formulas and considering the domain $[0, 2\pi]$, find the number of solutions to this trigonometric equation. The count is 12 solutions.