We are given the expression:
\[
\cot^{-1} \left( \frac{\sqrt{1 + \tan^2 2} + 1}{\tan 2} \right) - \cot^{-1} \left( \frac{\sqrt{1 + \tan^2 2} - 1}{\tan 2} \right)
\]
First, recall the identity \( \sqrt{1 + \tan^2 \theta} = \sec \theta \), so the expression becomes:
\[
\cot^{-1} \left( \frac{\sec 2 + 1}{\tan 2} \right) - \cot^{-1} \left( \frac{\sec 2 - 1}{\tan 2} \right)
\]
Using the identity for the difference of cotangents:
\[
\cot^{-1} A - \cot^{-1} B = \cot^{-1} \left( \frac{B - A}{1 + AB} \right)
\]
we simplify the given expression:
\[
\cot^{-1} \left( \frac{\frac{\sec 2 - 1}{\tan 2} - \frac{\sec 2 + 1}{\tan 2}}{1 + \frac{\sec 2 + 1}{\tan 2} \cdot \frac{\sec 2 - 1}{\tan 2}} \right)
\]
After simplifying, we find that the result is:
\[
2 - \frac{\pi}{2}
\]
Thus, the correct answer is \( 2 - \frac{\pi}{2} \).