The magnitude of heat exchanged by a system for the given cyclic process ABC (as shown in the figure) is (in SI units):
In thermodynamics, the heat exchanged by a system in a cyclic process is equal to the area enclosed by the process curve on a \( P-V \) diagram. In the given problem, the process involves a rectangle on the \( P-V \) diagram (since the pressure-volume graph forms a closed loop between points A, B, and C). The area of this rectangle can be calculated as: \[ \text{Area} = \text{Length} \times \text{Width} = (400 - 200) \times (200 - 100) = 200 \times 100 = 10\pi \text{ (in appropriate units)}. \] Therefore, the magnitude of heat exchanged is \( 10\pi \) units.
Final Answer: \( 10\pi \).
The net current flowing in the given circuit is ___ A.
If the equation \( a(b - c)x^2 + b(c - a)x + c(a - b) = 0 \) has equal roots, where \( a + c = 15 \) and \( b = \frac{36}{5} \), then \( a^2 + c^2 \) is equal to .