Step 1: The word "MATHS" contains 5 distinct letters: M, A, T, H, and S. We are required to form 6-letter words where each letter that appears must appear at least twice.
Step 2: The only way to satisfy the condition of having each letter that appears at least twice in a 6-letter word is by using exactly 2 of each of 2 letters.
Step 3: The number of ways to choose 2 letters from the 5 available letters is \( \binom{5}{2} \), and for each choice of letters, the 6 positions can be arranged in \( \frac{6!}{2!2!} \) ways. Thus, the total number of such 6-letter words is calculated.
If the area of the region \[ \{(x, y) : 1 - 2x \le y \le 4 - x^2,\ x \ge 0,\ y \ge 0\} \] is \[ \frac{\alpha}{\beta}, \] \(\alpha, \beta \in \mathbb{N}\), \(\gcd(\alpha, \beta) = 1\), then the value of \[ (\alpha + \beta) \] is :
Method used for separation of mixture of products (B and C) obtained in the following reaction is: 
Which of the following best represents the temperature versus heat supplied graph for water, in the range of \(-20^\circ\text{C}\) to \(120^\circ\text{C}\)? 