Step 1: The word "MATHS" contains 5 distinct letters: M, A, T, H, and S. We are required to form 6-letter words where each letter that appears must appear at least twice.
Step 2: The only way to satisfy the condition of having each letter that appears at least twice in a 6-letter word is by using exactly 2 of each of 2 letters.
Step 3: The number of ways to choose 2 letters from the 5 available letters is \( \binom{5}{2} \), and for each choice of letters, the 6 positions can be arranged in \( \frac{6!}{2!2!} \) ways. Thus, the total number of such 6-letter words is calculated.
If the system of equations \[ x + 2y - 3z = 2, \quad 2x + \lambda y + 5z = 5, \quad 14x + 3y + \mu z = 33 \]
has infinitely many solutions, then \( \lambda + \mu \) is equal to:




Given below are two statements:
Statement I: All the pairs of molecules \((\mathrm{PbO}, \mathrm{PbO_2}); (\mathrm{SnO}, \mathrm{SnO_2})\) and \((\mathrm{GeO}, \mathrm{GeO_2})\) contain amphoteric oxides.
Statement II: \(\mathrm{AlCl_3}, \mathrm{BH_3}, \mathrm{BeH_2}\) and \(\mathrm{NO_2}\) all have incomplete octet.
In the light of the above statements, choose the correct option.