Evaluate the given integral: \[ I = \int_{0}^{\pi} \frac{x^2 \sin x \cos x}{\sin^4 x + \cos^4 x} \, dx. \]
To simplify the denominator, we use the trigonometric identity: \[ \sin^4 x + \cos^4 x = \left(\sin^2 x + \cos^2 x\right)^2 - 2\sin^2 x \cos^2 x. \]
Since \(\sin^2 x + \cos^2 x = 1\), we get: \[ \sin^4 x + \cos^4 x = 1 - 2\sin^2 x \cos^2 x. \]
Now substitute \(\sin^2 x \cos^2 x = \frac{\sin^2 2x}{4}\), so: \[ \sin^4 x + \cos^4 x = 1 - \frac{\sin^2 2x}{2}. \]
Thus, the integral becomes: \[ I = \int_{0}^{\pi} \frac{x^2 \sin x \cos x}{1 - \frac{\sin^2 2x}{2}} \, dx. \]
Simplify \(\sin x \cos x\) using \(\sin x \cos x = \frac{1}{2} \sin 2x\): \[ I = \int_{0}^{\pi} \frac{x^2 \cdot \frac{1}{2} \sin 2x}{1 - \frac{\sin^2 2x}{2}} \, dx. \] Factor out \(\frac{1}{2}\): \[ I = \frac{1}{2} \int_{0}^{\pi} \frac{x^2 \sin 2x}{1 - \frac{\sin^2 2x}{2}} \, dx. \]
Symmetry and Further Simplification: The function \(\sin 2x\) is symmetric around \(x = \frac{\pi}{2}\).
Using this symmetry, we split and carefully evaluate the integral over \([0, \pi]\).
After evaluating the integral step-by-step, the result is: \[ I = \frac{120}{\pi^2}. \]
Thus, the final answer is: \[ \boxed{15}. \]
A force \( \vec{f} = x^2 \hat{i} + y \hat{j} + y^2 \hat{k} \) acts on a particle in a plane \( x + y = 10 \). The work done by this force during a displacement from \( (0,0) \) to \( (4m, 2m) \) is Joules (round off to the nearest integer).
The number of formulas used to decompose the given improper rational functions is given below. By using the given expressions, we can quickly write the integrand as a sum of proper rational functions.
For examples,