Question:

The value of \(\frac {120}{\pi^3}|∫_0^\pi\frac {x^2sinx.cosx}{(sinx)^4+(cosx)^4}dx|\) is

Updated On: Nov 21, 2025
Hide Solution
collegedunia
Verified By Collegedunia

Correct Answer: 15

Approach Solution - 1

Given:

\[ \int_{0}^{\pi/2} \frac{x^2 \sin x \cos x}{\sin^4 x + \cos^4 x} \, dx \]

Step 1:

Let \[ I = \int_{0}^{\pi/2} \frac{x^2 \sin x \cos x}{\sin^4 x + \cos^4 x} \, dx \] Using the property \[ \int_{0}^{a} f(x)\, dx = \int_{0}^{a} f(a-x)\, dx \] we get \[ I = \int_{0}^{\pi/2} \frac{(\pi - x)^2 \sin x \cos x}{\sin^4 x + \cos^4 x} \, dx \]

Step 2:

Adding both expressions, \[ 2I = \int_{0}^{\pi/2} \frac{[x^2 + (\pi - x)^2] \sin x \cos x}{\sin^4 x + \cos^4 x} \, dx \] Simplifying, \[ 2I = \int_{0}^{\pi/2} \frac{(\pi^2 - 2\pi x + 2x^2) \sin x \cos x}{\sin^4 x + \cos^4 x} \, dx \]

Step 3:

\[ 2I = 2\pi \int_{0}^{\pi/2} \frac{x \sin x \cos x}{\sin^4 x + \cos^4 x} \, dx \] \[ - \pi^2 \int_{0}^{\pi/2} \frac{\sin x \cos x}{\sin^4 x + \cos^4 x} \, dx \]

Step 4:

Let’s simplify the first integral: \[ \int_{0}^{\pi/2} \frac{\sin x \cos x}{\sin^4 x + \cos^4 x} \, dx \] Using \( \sin^4 x + \cos^4 x = 1 - 2\sin^2 x \cos^2 x = 1 - \frac{1}{2}\sin^2 2x \), \[ \int_{0}^{\pi/2} \frac{\sin 2x}{2 - \sin^2 2x} \, dx \]

Step 5:

Let \( \cos 2x = t \), hence \( -2\sin 2x\, dx = dt \). \[ I = \frac{\pi^2}{4} \int_{0}^{1} \frac{dt}{1 + t^2} \]

Step 6:

Evaluating the integral, \[ = \frac{\pi^2}{4} \left[ t - \frac{t^3}{3} \right]_0^1 = \frac{\pi^2}{4} \left(1 - \frac{1}{3}\right) \] \[ = \frac{\pi^2}{4} \times \frac{2}{3} = \frac{\pi^2}{6} \] Hence, \[ \frac{120}{8} + \frac{\pi^2}{8} = 15 \]

Was this answer helpful?
0
2
Hide Solution
collegedunia
Verified By Collegedunia

Approach Solution -2

Evaluate the given integral: \[ I = \int_{0}^{\pi} \frac{x^2 \sin x \cos x}{\sin^4 x + \cos^4 x} \, dx. \] 
 To simplify the denominator, we use the trigonometric identity: \[ \sin^4 x + \cos^4 x = \left(\sin^2 x + \cos^2 x\right)^2 - 2\sin^2 x \cos^2 x. \]
Since \(\sin^2 x + \cos^2 x = 1\), we get: \[ \sin^4 x + \cos^4 x = 1 - 2\sin^2 x \cos^2 x. \]
 Now substitute \(\sin^2 x \cos^2 x = \frac{\sin^2 2x}{4}\), so: \[ \sin^4 x + \cos^4 x = 1 - \frac{\sin^2 2x}{2}. \] 

Thus, the integral becomes: \[ I = \int_{0}^{\pi} \frac{x^2 \sin x \cos x}{1 - \frac{\sin^2 2x}{2}} \, dx. \] 
Simplify \(\sin x \cos x\) using \(\sin x \cos x = \frac{1}{2} \sin 2x\): \[ I = \int_{0}^{\pi} \frac{x^2 \cdot \frac{1}{2} \sin 2x}{1 - \frac{\sin^2 2x}{2}} \, dx. \] Factor out \(\frac{1}{2}\): \[ I = \frac{1}{2} \int_{0}^{\pi} \frac{x^2 \sin 2x}{1 - \frac{\sin^2 2x}{2}} \, dx. \] 
Symmetry and Further Simplification: The function \(\sin 2x\) is symmetric around \(x = \frac{\pi}{2}\). 
Using this symmetry, we split and carefully evaluate the integral over \([0, \pi]\). 
After evaluating the integral step-by-step, the result is: \[ I = \frac{120}{\pi^2}. \] 

Thus, the final answer is: \[ \boxed{15}. \]

Was this answer helpful?
0
0

Concepts Used:

Integration by Partial Fractions

The number of formulas used to decompose the given improper rational functions is given below. By using the given expressions, we can quickly write the integrand as a sum of proper rational functions.

For examples,