Given:
\[ \int_{0}^{\pi/2} \frac{x^2 \sin x \cos x}{\sin^4 x + \cos^4 x} \, dx \]
Step 1:
Let \[ I = \int_{0}^{\pi/2} \frac{x^2 \sin x \cos x}{\sin^4 x + \cos^4 x} \, dx \] Using the property \[ \int_{0}^{a} f(x)\, dx = \int_{0}^{a} f(a-x)\, dx \] we get \[ I = \int_{0}^{\pi/2} \frac{(\pi - x)^2 \sin x \cos x}{\sin^4 x + \cos^4 x} \, dx \]
Step 2:
Adding both expressions, \[ 2I = \int_{0}^{\pi/2} \frac{[x^2 + (\pi - x)^2] \sin x \cos x}{\sin^4 x + \cos^4 x} \, dx \] Simplifying, \[ 2I = \int_{0}^{\pi/2} \frac{(\pi^2 - 2\pi x + 2x^2) \sin x \cos x}{\sin^4 x + \cos^4 x} \, dx \]
Step 3:
\[ 2I = 2\pi \int_{0}^{\pi/2} \frac{x \sin x \cos x}{\sin^4 x + \cos^4 x} \, dx \] \[ - \pi^2 \int_{0}^{\pi/2} \frac{\sin x \cos x}{\sin^4 x + \cos^4 x} \, dx \]
Step 4:
Let’s simplify the first integral: \[ \int_{0}^{\pi/2} \frac{\sin x \cos x}{\sin^4 x + \cos^4 x} \, dx \] Using \( \sin^4 x + \cos^4 x = 1 - 2\sin^2 x \cos^2 x = 1 - \frac{1}{2}\sin^2 2x \), \[ \int_{0}^{\pi/2} \frac{\sin 2x}{2 - \sin^2 2x} \, dx \]
Step 5:
Let \( \cos 2x = t \), hence \( -2\sin 2x\, dx = dt \). \[ I = \frac{\pi^2}{4} \int_{0}^{1} \frac{dt}{1 + t^2} \]
Step 6:
Evaluating the integral, \[ = \frac{\pi^2}{4} \left[ t - \frac{t^3}{3} \right]_0^1 = \frac{\pi^2}{4} \left(1 - \frac{1}{3}\right) \] \[ = \frac{\pi^2}{4} \times \frac{2}{3} = \frac{\pi^2}{6} \] Hence, \[ \frac{120}{8} + \frac{\pi^2}{8} = 15 \]
Evaluate the given integral: \[ I = \int_{0}^{\pi} \frac{x^2 \sin x \cos x}{\sin^4 x + \cos^4 x} \, dx. \]
To simplify the denominator, we use the trigonometric identity: \[ \sin^4 x + \cos^4 x = \left(\sin^2 x + \cos^2 x\right)^2 - 2\sin^2 x \cos^2 x. \]
Since \(\sin^2 x + \cos^2 x = 1\), we get: \[ \sin^4 x + \cos^4 x = 1 - 2\sin^2 x \cos^2 x. \]
Now substitute \(\sin^2 x \cos^2 x = \frac{\sin^2 2x}{4}\), so: \[ \sin^4 x + \cos^4 x = 1 - \frac{\sin^2 2x}{2}. \]
Thus, the integral becomes: \[ I = \int_{0}^{\pi} \frac{x^2 \sin x \cos x}{1 - \frac{\sin^2 2x}{2}} \, dx. \]
Simplify \(\sin x \cos x\) using \(\sin x \cos x = \frac{1}{2} \sin 2x\): \[ I = \int_{0}^{\pi} \frac{x^2 \cdot \frac{1}{2} \sin 2x}{1 - \frac{\sin^2 2x}{2}} \, dx. \] Factor out \(\frac{1}{2}\): \[ I = \frac{1}{2} \int_{0}^{\pi} \frac{x^2 \sin 2x}{1 - \frac{\sin^2 2x}{2}} \, dx. \]
Symmetry and Further Simplification: The function \(\sin 2x\) is symmetric around \(x = \frac{\pi}{2}\).
Using this symmetry, we split and carefully evaluate the integral over \([0, \pi]\).
After evaluating the integral step-by-step, the result is: \[ I = \frac{120}{\pi^2}. \]
Thus, the final answer is: \[ \boxed{15}. \]
If \[ \int (\sin x)^{-\frac{11}{2}} (\cos x)^{-\frac{5}{2}} \, dx \] is equal to \[ -\frac{p_1}{q_1}(\cot x)^{\frac{9}{2}} -\frac{p_2}{q_2}(\cot x)^{\frac{5}{2}} -\frac{p_3}{q_3}(\cot x)^{\frac{1}{2}} +\frac{p_4}{q_4}(\cot x)^{-\frac{3}{2}} + C, \] where \( p_i, q_i \) are positive integers with \( \gcd(p_i,q_i)=1 \) for \( i=1,2,3,4 \), then the value of \[ \frac{15\,p_1 p_2 p_3 p_4}{q_1 q_2 q_3 q_4} \] is ___________.
Method used for separation of mixture of products (B and C) obtained in the following reaction is: 
The number of formulas used to decompose the given improper rational functions is given below. By using the given expressions, we can quickly write the integrand as a sum of proper rational functions.

For examples,
