\( Z = \dfrac{1 + i \cos \theta}{1 - 2i \cos \theta} \)
\( Z = -Z \Rightarrow \dfrac{1 + i \cos \theta}{1 - 2i \cos \theta} = - \dfrac{1 + i \cos \theta}{1 - 2i \cos \theta} \)
\( (1 + i \cos \theta)(1 - 2i \cos \theta) = -(1 - 2i \cos \theta)(1 + i \cos \theta) \)
\( (1 + i \cos \theta)(1 + 2i \cos \theta) = -(1 - 2i \cos \theta)(1 - i \cos \theta) \)
\( 1 + 3i \cos \theta - 2 \cos^2 \theta = -(1 - 3i \cos \theta - 2 \cos^2 \theta) \)
\( 2 - 4 \cos^2 \theta = 0 \)
\( \Rightarrow \cos^2 \theta = \dfrac{1}{2} \Rightarrow \theta = -\dfrac{\pi}{4}, \dfrac{3\pi}{4}, -\dfrac{\pi}{4}, \dfrac{5\pi}{4}, \dfrac{7\pi}{4} \)
sum = \( 3\pi \)
Let:
\[ Z = \frac{1 + i \cos \theta}{1 - 2i \cos \theta}. \]
For \( Z \) to be purely imaginary:
\[ Z + \overline{Z} = 0, \]
where \( \overline{Z} \) is the complex conjugate of \( Z \). Thus:
\[ Z + \overline{Z} = \frac{1 + i \cos \theta}{1 - 2i \cos \theta} + \frac{1 - i \cos \theta}{1 + 2i \cos \theta} = 0. \]
Simplify:
\[ (1 + i \cos \theta)(1 - 2i \cos \theta) + (1 - i \cos \theta)(1 + 2i \cos \theta) = 0. \]
Expand both terms:
\[ (1 + i \cos \theta)(1 - 2i \cos \theta) = 1 - 2i \cos \theta + i \cos \theta - 2 \cos^2 \theta, \]
\[ (1 - i \cos \theta)(1 + 2i \cos \theta) = 1 + 2i \cos \theta - i \cos \theta - 2 \cos^2 \theta. \]
Combine:
\[ (1 - 2i \cos \theta + i \cos \theta - 2 \cos^2 \theta) + (1 + 2i \cos \theta - i \cos \theta - 2 \cos^2 \theta) = 0. \]
Simplify further:
\[ 2 - 4 \cos^2 \theta = 0. \]
Solve for \( \cos^2 \theta \):
\[ \cos^2 \theta = \frac{1}{2}. \]
Step 2: Find all possible values of \( \theta \). If \( \cos^2 \theta = \frac{1}{2} \), then:
\[ \cos \theta = \pm \frac{1}{\sqrt{2}}. \]
The possible values of \( \theta \in [-\pi, \pi] \) are:
\[ \theta = \pm \frac{\pi}{4}, \pm \frac{3\pi}{4}. \]
Step 3: Sum of all possible values
\[ \text{Sum} = \frac{\pi}{4} + \left( -\frac{\pi}{4} \right) + \frac{3\pi}{4} + \left( -\frac{3\pi}{4} \right) = 3\pi. \]
Final Answer: \( 3\pi \).
Let \(S=\left\{ z\in\mathbb{C}:\left|\frac{z-6i}{z-2i}\right|=1 \text{ and } \left|\frac{z-8+2i}{z+2i}\right|=\frac{3}{5} \right\}.\)
Then $\sum_{z\in S}|z|^2$ is equal to
Method used for separation of mixture of products (B and C) obtained in the following reaction is: 
In the following \(p\text{–}V\) diagram, the equation of state along the curved path is given by \[ (V-2)^2 = 4ap, \] where \(a\) is a constant. The total work done in the closed path is: 
Let \( ABC \) be a triangle. Consider four points \( p_1, p_2, p_3, p_4 \) on the side \( AB \), five points \( p_5, p_6, p_7, p_8, p_9 \) on the side \( BC \), and four points \( p_{10}, p_{11}, p_{12}, p_{13} \) on the side \( AC \). None of these points is a vertex of the triangle \( ABC \). Then the total number of pentagons that can be formed by taking all the vertices from the points \( p_1, p_2, \ldots, p_{13} \) is ___________.