Question:

The solution of dydx=xlogx2+xsiny+ycosy

Updated On: Apr 27, 2024
  • (A) y sin y = x2 log x + c
  • (B) y sin y = x2 + c
  • (C) y sin y = x2 + log x + c
  • (D) y sin y = x log x + c
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is A

Solution and Explanation

Explanation:
Given equation is dydx=xlogx2+xsiny+ycosy(siny+ycosy)dy=(xlogx2+x)dxOn integrating both sides, we get (siny+ycosy)dy=(xlogx2+x)dxcosy+ysiny+cosy=x22logx2x221x22xdx+xdx+cysiny=x222logxxdx+xdx+cysiny=x2logx+c

Was this answer helpful?
0
0

Top Questions on complex numbers

View More Questions